
**Report on Lot Classification and Salinity
Assessment**

Proposed Residential Subdivision

**Stage 1, Birling - 975 The Northern Road,
Bringelly NSW**

Prepared for Cameron Brae Pty Ltd

Project 204684.17

9 October 2025

Document History

Details

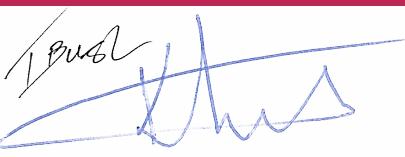
Project No.	204684.17
Document Title	Report on Lot Classification and Salinity Assessment
Site Address	Stage 1, Birling - 975 The Northern Road, Bringelly NSW
Report Prepared For	Cameron Brae Pty Ltd
Filename	204684.17.R.001.Rev0

Status and Review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Thomas Bush	Konrad Schultz	9 October 2025

Distribution of Copies

Status	Issued to
Revision 0	Cameron Brae Pty Ltd


The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature

Date

Author		9 October 2025
Reviewer		9 October 2025

Table of Contents

	Page No
1. Introduction	1
2. Background	1
3. Site description	1
4. Geology	2
5. Field work	2
5.1 Methods	2
5.2 Results	2
6. Laboratory testing	3
6.1 Plasticity and shrink-swell index	3
6.2 Salinity, aggressivity, sodicity and dispersibility	4
7. Comments	5
7.1 General	5
7.2 Geotechnical model	5
7.3 Fill placed on allotments	5
7.4 Lot classification	7
7.5 Site preparation	7
7.6 Footings	7
7.7 Site maintenance and drainage	8
8. Salinity management plan	8
9. References	9
10. Limitations	10

Appendix A: About this report

Appendix B: Drawing 1 – Test location plan

Appendix C: Test pit logs (Pits 1 – 49)

Appendix D: Laboratory results
 Summary table D1
 Earthworks Quality Report (Project 204684.09.R.014)

Appendix E: Works-as-executed fill plan (prepared by YSCO Geomatics)

Appendix F: CSIRO publication

Report on Lot Classification and Salinity Assessment

Proposed Residential Subdivision

Stage 1, Birling - 975 The Northern Road, Bringelly NSW

1. Introduction

This report presents the results of a lot classification and salinity assessment undertaken for the proposed residential subdivision known as Stage 1, Birling - 975 The Northern Road, Bringelly NSW (the site). The investigation was commissioned by Cameron Brae Pty Ltd and was undertaken in accordance with Douglas Partners Pty Ltd (Douglas) proposal 204684.07.P.001.Rev0 dated 19 October 2023.

It is understood that the proposed development of the site includes the creation of 99 residential lots (Lots 1101 – 1199). Investigation was carried out to provide information on the subsurface conditions to allow for the classification of each lot in accordance with the requirements of AS 2870 "Residential Slabs and Footings" (AS 2870, 2011).

The investigation comprised the excavation of test pits and dynamic cone penetrometer (DCP) testing, followed by laboratory testing of selected samples, engineering analysis and reporting. Details of the field work and laboratory results are given in this report, together with comments relating to design and construction practice.

Site plans showing the subdivision layout and the works-as-executed (WAE) fill plan prepared by YSCO Geomatics, the project surveyor, were provided by the client.

This report must be read in conjunction with all appendices including the notes provided in Appendix A.

2. Background

Previous investigation within the site was undertaken by Douglas with details given in a report titled "Report on Salinity Investigation and Management Plan, Stage 1 Birling Property, Proposed Residential Subdivision, 975 The Northern Road, Bringelly NSW" (Project 204684.01.R.001.Rev1) dated 6 June 2022 (Douglas, 2022).

In summary, results from the Douglas 2022 investigation indicate that the soils underlying the site are non-aggressive to mildly aggressive to steel, mildly to moderately aggressive to concrete, and slightly to very saline.

3. Site description

The site is an irregular shaped area of approximately 8.3 ha (refer Drawing 1), with maximum north-south and east-west dimensions of some 330 m and 300 m respectively. The site is bounded to the north by private residential properties, to the east by The Northern Road, and to the south and west by neighbouring stages of the Birling residential development.

Following the placement of controlled fill, site levels gently fall to the eastern part of the site with an overall difference in level of approximately 8.0 m from the highest test location (RL 82.0 m relative to Australian Height Datum [AHD]) to the lowest (RL 74.0 m).

4. Geology

Reference to the NSW Seamless Geological Series (GSNSW, 2019) indicates that the site is underlain by Triassic aged Bringelly Shale (mapping unit Twib) of the Wianamatta Group. This formation typically comprises shale, carbonaceous claystone, claystone, laminitite and fine to medium-grained lithic sandstone with occasional coal and tuff. Bringelly Shale typically weathers to form clays of medium to high plasticity. The results of the investigation were consistent with the geological mapping, with residual soil and/or shale or sandstone rock encountered in the test locations that penetrated the fill.

5. Field work

5.1 Methods

The field work comprised the excavation of 49 test pits (Pits 1–49) to depths in the range 0.3–2.5 m. The test pits were excavated using a Hyundai 60 CR-9 six tonne excavator fitted with a 450 mm wide, toothed bucket. The test pits were logged on site by a geotechnical engineer who collected disturbed and 'undisturbed' samples (in 50 mm diameter thin-walled steel tubes) to assist in strata identification and laboratory testing.

Dynamic cone penetrometer (DCP) tests were carried out to depths of up to 1.2 m adjacent to the test locations to assess the penetration resistance of the near-surface soils.

The test pit locations were nominated and located on site by Douglas and are shown on Drawing 1 (Appendix B). Surface levels relative to Australian Height Datum (AHD) and coordinates (to GDA 2020 MGA / Zone 56) were determined using a differential GPS which has a nominal accuracy of ± 0.1 m. It is important to note that Douglas is not a registered surveyor, hence the coordinates and elevations will be considered approximate. Surface levels and coordinates are given on the test pit logs.

5.2 Results

The test pit logs are presented in Appendix C and must be read in conjunction with the accompanying standard notes defining classification methods and descriptive terms. The typical succession of strata is summarised as follows:

Fill (Topsoil):	Silty clay topsoil fill encountered to depths of 0.1 – 0.3 m in Pits 1, 2, 5 – 10, 13, 15, 17 – 31, 33 – 38, 40 – 42 and 45 – 49.
Fill (Controlled):	Silty clay fill encountered to depths of 0.3 – 1.8 m in Pits 5 – 10 and 12 – 17, and continuing to the limit of investigation depth of 2.5 m in Pit 11.
Clay:	Silty clay encountered to depths of 0.2 – 2.45 m in Pits 1 – 3, 5, 9, 12, 14, 19 – 22, 24 – 30, 32, 34, 36 – 39, 45 and 46, and to the limit of investigation depth of 2.5 m in Pits 4, 6 – 8, 10, 13, 15 – 18 and 26.
Rock:	Shale or sandstone encountered from depths of 0 – 2.45 m in Pits 1 – 3, 5, 9, 12, 14, 19 – 25 and 27 – 49, and continuing to limit of investigation depths in the range 0.1 – 2.5 m.

No free groundwater was observed in any of the test pits during the field work. It is noted that the pits were immediately backfilled following excavation, logging and sampling. Groundwater levels are affected by factors such as preceding climatic conditions and soil permeability and can therefore fluctuate time.

6. Laboratory testing

6.1 Plasticity and shrink-swell index

Selected samples from the test pits were tested in the laboratory for measurement of field moisture content, plasticity and Shrink-swell index. The detailed laboratory test report sheets are presented in Appendix D, with the results summarised in Table 1.

Table 1: Summary of test results – Shrink-swell index and plasticity

Pit No.	Depth (m)	FMC (%)	LL (%)	PL (%)	PI (%)	LS (%)	I_{ss} (%/ΔpF)	Material
6	0.5 – 0.6	18.3	48	19	29	12.5	-	Fill
8	0.5	20.0	50	18	32	13.5	-	Fill
13	0.5	21.7	63	19	44	13.5	-	Fill
17	0.5	18.6	50	18	32	13.0	-	Fill
32	0.5	18.9	65	23	42	13.0	-	Silty clay
38	0.5	15.2	46	18	28	11.0	-	Silty clay
7	0.5 – 0.65	20.4	-	-	-	-	2.2	Silty clay
12	0.5 – 0.76	17.6	-	-	-	-	1.5	Silty clay
25	0.5 – 0.74	14.0	-	-	-	-	2.0	Silty clay
36	0.5 – 0.76	18.1	-	-	-	-	2.6	Silty clay

Where: FMC = Field moisture content
 LL = Liquid limit
 LS = Linear shrinkage

PL = Plastic limit
 PI = Plasticity Index
 I_{ss} = Shrink-swell index

The field moisture contents of the soil samples were 4.1% dry to 2.7% wet of the plastic limit. The plasticity results indicate the soils tested are of medium to high plasticity and would be susceptible to shrink-swell movements with changes in the soils moisture content. The Shrink-swell index (I_{ss}) results indicate that the soils are of medium shrink-swell potential.

6.2 Salinity, aggressivity, sodicity and dispersibility

Selected samples collected from the test locations were tested in the laboratory for determination of aggressivity to concrete and steel, sodicity (erosion potential), Emerson class number (dispersion potential), textural classification and salinity.

The detailed laboratory report sheets along with Summary Table D1 presenting the individual test results are presented in Appendix D. Table D1 also presents aggressivity and salinity classifications for each sample tested based on pH, chloride concentration, sulphate concentration, calculated resistivity and calculated ECe values.

The number of samples tested for each parameter and the range of test results obtained are summarised in Table 2.

Table 2: Results of laboratory testing – Chemical

Parameter		Units	Number of Tests	Range of Results
pH		pH units	65	4.5 – 9.5
Chlorides		(mg/kg)	17	49 – 1000
Sulphates		(mg/kg)	17	37 – 420
Aggressivity (AS 2159: 2009)	to Concrete	-	65	Non-aggressive to moderately aggressive
	to Steel	-	65	Non-aggressive to mildly aggressive
Exchangeable Sodium (Na)		(meq/100g)	8	0.3 – 3.4
CEC (cation exchange capacity)		(meq/100g)	8	2.6 – 27
Sodicity [Na/CEC]		(ESP%)	8	4.1 – 28.9
Sodicity Class		[after DLWC]	8	Sodic to highly sodic
Emerson Class No.		-	4	2
EC1:5 [Lab.]		(mS/cm)	65	62.2 – 802.1
Resistivity		$\Omega \cdot \text{cm}$	65	1247 – 16077
ECe [M x EC1:5]		(dS/m)	65	0.4 – 5.4
Salinity Class Richards (1954)		-	65	Non-saline to moderately saline

Where: M = soil textural factor

6.2.1 **Aggressivity**

Sample aggressivity classifications (refer Table D1, Appendix D) are based on pH, sulphate concentration, chloride concentration and calculated resistivity values and are assessed in accordance with AS 2159 “*Piling Design and Installation*” (AS 2159, 2009). The inferred very low permeability of the sampled clay-rich soils indicates that soils at all test pits are in Condition “B” (AS 2159, 2009).

The results indicate that:

- 19 samples were non-aggressive, 45 were mildly aggressive and one was moderately aggressive to concrete; and
- 45 samples were non-aggressive and 20 were mildly aggressive to steel.

6.2.2 **Salinity**

Sample salinity classifications (refer Table D1, Appendix D) are based on calculated EC_e values using the method of Richards “*Diagnosis of Saline and Alkaline Soils*.” (Richards, 1954).

The results indicate that 17 samples were non-saline, 39 were slightly saline and nine were moderately saline.

6.2.3 **Sodicity and dispersibility**

The laboratory test results (refer Table D1, Appendix D) indicate that soils are non-sodic to highly sodic and would have potential for soil erosion if left exposed. Emerson class number testing undertaken on four samples at a depth of 0.5 m below ground level indicate shallow soils are Class 2, indicating a very high potential for dispersion.

7. **Comments**

7.1 **General**

The following comments are based on a review of all information provided to Douglas, the surface and subsurface profiles encountered at the time of the investigation and the results of laboratory testing of selected samples from within the proposed development area.

7.2 **Geotechnical model**

Based on the results of the investigation, the subsurface geotechnical model underlying the site typically comprises controlled fill overlying residual clays and/or shale or sandstone. Free groundwater is not expected shallower than 2 – 3 m below ground level.

7.3 **Fill placed on allotments**

To achieve design levels, fill to depths of up to 3.2 m was placed on the lots. Reference should be made to the WAE fill plan prepared by YSCO Geomatics for the surveyed extent and depth of fill (refer Appendix E). It is noted that the WAE fill plans is based on the difference in levels of the

stripped surface and the filled surface, excluding the placement of any topsoil that may have occurred after the survey or this investigation.

Based on the survey information provided by YSCO Geomatics and the results of the field investigation, the depth of fill (excluding topsoil) placed on the individual lots is summarised in Table 3.

Table 3: Controlled fill summary

Lot No.	Depth of controlled fill (m)	Lot No.	Depth of controlled fill (m)	Lot No.	Depth of controlled fill (m)	Lot No.	Depth of controlled fill (m)
1101	0	1126	0 – 2.0	1151	0	1176	0
1102	0	1127	0 – 2.0	1152	0	1177	0
1103	0	1128	0 – 2.0	1153	0	1178	0
1104	0	1129	0 – 2.0	1154	0	1179	0
1105	0	1130	0 – 1.6	1155	0	1180	0
1106	0	1131	0 – 1.6	1156	0	1181	0
1107	0	1132	0 – 1.6	1157	0	1182	0
1108	0 – 0.4	1133	0 – 1.2	1158	0	1183	0
1109	0 – 0.8	1134	0 – 1.2	1159	0	1184	0
1110	0 – 1.2	1135	0 – 1.2	1160	0	1185	0
1111	0 – 1.2	1136	0 – 0.8	1161	0	1186	0
1112	0 – 1.2	1137	0 – 0.4	1162	0	1187	0
1113	0.4 – 1.2	1138	0	1163	0	1188	0
1114	0.4 – 1.6	1139	0	1164	0	1189	0
1115	0.4 – 1.6	1140	0	1165	0	1190	0
1116	0.4 – 1.6	1141	0	1166	0	1191	0
1117	0.8 – 1.6	1142	0	1167	0	1192	0
1118	0.8 – 1.6	1143	0	1168	0	1193	0
1119	0.4 – 1.6	1144	0	1169	0	1194	0
1120	0.8 – 2.0	1145	0	1170	0	1195	0
1121	0.4 – 3.2	1146	0	1171	0	1196	0
1122	0.4 – 3.2	1147	0	1172	0	1197	0
1123	0 – 2.4	1148	0	1173	0	1198	0
1124	0 – 1.6	1149	0	1174	0 – 0.4	1199	0
1125	0 – 1.6	1150	0	1175	0		0

7.4 Lot classification

Lot classification has been carried out by estimation of characteristic surface movements (y_s) using the methods outlined in AS 2870, taking account of the subsurface profiles determined from the test locations, laboratory measured plasticity and Shrink-swell index values and a crack depth of zero (for controlled fill and cut surfaces).

Characteristic surface movements (y_s) of up to approximately 55 mm are predicted for the lots. Accordingly, the lot classifications have been determined and are summarised in Table 4.

Table 4: Lot Classification Summary

Lot No.	Lot Classification
1179 – 1188 and 1190 – 1199	S*
1101 – 1105, 1136 – 1154, 1160 – 1162, 1167 – 1170, 1175 – 1178 and 1189	M*
1106 – 1135, 1155 – 1159, 1163 – 1166 and 1171 – 1174	H1*

Where:
 S = Class S (slightly reactive)
 M = Class M (moderately reactive)
 H1 = Class H1 (highly reactive)

Note: (*) Denotes a filled lot

7.5 Site preparation

Subject to site-specific design requirements, site preparation for the construction of residential structures will most likely include the removal of all vegetation, organic topsoils and other deleterious materials from the building area. Allowance will need to be made for variability in topsoil thicknesses, particularly as additional topsoil may have been spread after the excavation of the test pits.

Where a level building platform is to be constructed by cut and fill methods, reference should be made to Section 6.4.2 of AS 2870 which gives guidelines on fill placement methods and specification for compaction. The placement and compaction of fill should also be carried out in accordance with the requirements of Camden Council.

The requirements of Camden Council for controlled fill specify compaction of cohesive (clay) fill to a minimum dry density ratio of 95% relative to Standard compaction. Moisture content of the fill should be maintained near OMC measured in the Standard compaction test. Density testing would be required to confirm the placement of fill in the above controlled manner.

7.6 Footings

It is recommended that footing systems be designed and constructed in accordance with AS 2870 for the nominated classification (refer Section 7.4) and the additional requirements given in this report.

Footing systems founded uniformly in natural stiff or stronger clay or controlled fill could be designed using an allowable bearing pressure of 100 kPa. Footings founded in very low strength (or greater) rock could be designed using an allowable bearing pressure of 700 kPa.

Where footing systems are proposed adjacent to services or retaining walls or located through areas of uncontrolled fill (for example, following construction of a level building platform placed without engineering control), local deepening of the footings or alternatively the inclusion of piers will most likely be required. Founding levels should also be constructed below the zone of influence of the service trenches and retaining walls, which is generally taken to be within a 45° (ie: 1 horizontal:1 vertical) line extending from the base of the trench or retaining wall to the ground surface and through fill to the residual (undisturbed) soils or weathered rock.

Where partial rock foundations result following construction of cut to fill platforms or where exposed conditions include controlled fill, residual soils/rock and/or large variations in controlled fill depth, reference must be made to AS 2870:2011 regarding the provision of articulation within the structure and/or the construction of a foundation system that provides uniform bearing.

All footing systems should be designed and constructed in accordance with sound engineering principles, with care exercised to ensure that footing trenches/piers are inspected for design compliance prior to the placement of steel and pouring of concrete.

Where raft slabs are proposed, the raft stiffness should be designed in accordance with the designated lot classification and the requirements of AS 2870:2011. If a suspended raft is proposed, then it must take account of the likely range of swell movements of the construction platform for the relevant classification.

Masonry walls should be articulated in accordance with Cement Concrete & Aggregates Australia "Technical Note 61, Articulated Walling" (CCAA, 2008).

7.7 Site maintenance and drainage

The site classifications in Section 7.4 are conditional on the developed lots being maintained in accordance with the CSIRO publication *Foundation Maintenance and Footing Performance*, a copy of which is included in Appendix F.

Whilst it must be accepted that some minor cracking in most structures is inevitable on reactive sites, the guide describes suggested site maintenance practices aimed at limiting foundation movements and at keeping cracking within acceptable limits.

Surface drainage should be installed and maintained at the site. If drainage measures (surface and subsurface) are not installed and maintained adverse moisture conditions could arise, and footing performance could be compromised. All collected stormwater, groundwater and roof runoff should be discharged into the stormwater disposal system.

8. Salinity management plan

As there is potential for salts to be mobile, a "worst-case" scenario was adopted to determine the salinity and aggressivity classifications for each lot. This was achieved by comparing the worst-case salinity and aggressivity to concrete and steel classifications from each test location (refer Table D1, Appendix D) from this investigation with the results of Douglas' previous investigation (Douglas, 2022). The adopted aggressivity to concrete and steel and salinity classifications for each lot are summarised in Table 5.

Table 5: Aggressivity and salinity classification summary

Lot No.	Exposure classification for concrete (AS 3600)	Exposure classification for concrete piles (AS 2159)	Exposure classification for steel piles (AS 2159)	Salinity classification (Richards 1954)
1120 – 1125, 1160 – 1169 and 1180 – 1187	B1	Mild	Mild	Very saline
1101 – 1119, 1126 – 1128, 1135 – 1159, 1170 – 1179 and 1188 – 1196	A2	Mild	Mild	Moderately saline
1129 – 1134 and 1197 – 1199	B1	Moderate	Mild	Moderately saline

The classifications given in Table 5 must be taken into account by the designer when determining durability and corrosion requirements as per AS 3600:2018 “Concrete Structures” (AS 3600, 2018), AS 2159:2009 “Piling Design and Installation” (AS 2159, 2009) and “Precast concrete pipes” (AS 4058, 2007) for:

- Concrete foundations and concrete structure (AS 3600).
- Concrete piles (AS 2159).
- Corrosion allowances for steel (as per AS 2159).
- Precast concrete pipes (as per AS 4058).

The above should be complementary to standard building practices.

This Salinity Management Plan (SMP) is a post earthworks assessment only and as such, the classifications given within do not apply to services previously installed during the bulk earthworks and civil works phases of the development.

This SMP supersedes the SMP provided for residential development purposes within the site given in the previous Douglas 2022 report.

9. References

AS 2159. (2009). *Piling Design and Installation*. Standards Australia.

AS 2870. (2011). *Residential Slabs and Footings*. Standards Australia.

AS 3600. (2018). *Concrete Structures*. including Amendment 1:2018 and Amendment 2:2021: Standard Australia.

AS 4058. (2007). *Precast Concrete Pipe (Pressure and Non-Pressure)*. Australian Standard.

CCAA. (2008). *TN61, Articulated Walling*. Technical Note 61, 3rd Edition: Cement Concrete & Aggregates Australia.

Douglas. (2022). *Report on Salinity Investigation and Management Plan, Stage 1 Birling Property, Proposed Residential Subdivision, 975 The Northern Road, Bringelly NSW*. Macarthur: Douglas Partners Pty Ltd, Project 204684.01.R.001.Rev0.

GSNSW. (2019). *NSW Seamless Geology*. Geological Survey NSW Web Map Service.

Richards, L. A. (1954). *Diagnosis of Saline and Alkaline Soils*. Washington D.C: US Department of Agriculture.

10. Limitations

Douglas Partners Pty Ltd (Douglas) has prepared this report (or services) for this project at Stage 1, Birling - 975 The Northern Road, Bringelly NSW in line with Douglas' proposal dated 19 October 2023 and acceptance received from Cameron Brae Pty Ltd. The work was carried out under Douglas' Engagement Terms. This report is provided for the use of Cameron Brae Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of Douglas, does so entirely at its own risk and without recourse to Douglas for any loss or damage. In preparing this report Douglas has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after Douglas' field testing has been completed.

Douglas' advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by Douglas in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by Douglas. This is because this report has been written as advice and opinion rather than instructions for construction.

Appendix A

About this report

Introduction

These notes have been provided to amplify Douglas' report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

Douglas' reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Engagement Terms for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

- In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;
- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather

changes. They may not be the same at the time of construction as are indicated in the report; and

- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, Douglas will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, Douglas cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, Douglas will be pleased to assist with investigations or advice to resolve the matter.

About this Report

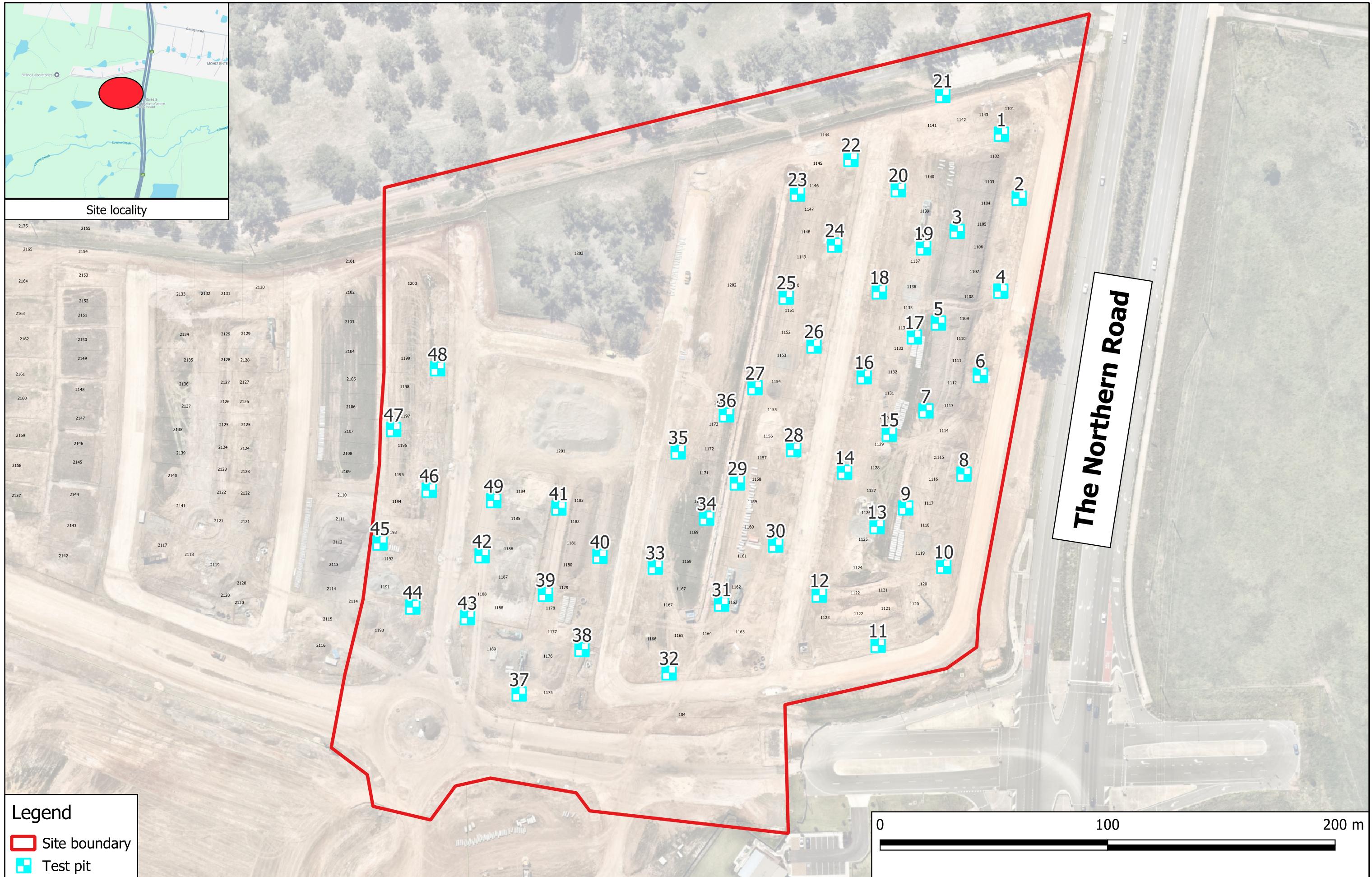
Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, Douglas requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. Douglas would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection


The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

intentionally blank

Appendix B

Drawing 1 – Test location plan

Appendix C

Test pit logs (Pits 1 – 49)

Introduction to Terminology, Symbols and Abbreviations

Douglas Partners' reports, investigation logs, and other correspondence may use terminology which has quantitative or qualitative connotations. To remove ambiguity or uncertainty surrounding the use of such terms, the following sets of notes pages may be attached Douglas Partners' reports, depending on the work performed and conditions encountered:

- Soil Descriptions;
- Rock Descriptions; and
- Sampling, insitu testing, and drilling methodologies

In addition to these pages, the following notes generally apply to most documents.

Abbreviation Codes

Site conditions may also be presented in a number of different formats, such as investigation logs, field mapping, or as a written summary. In some of these formats textual or symbolic terminology may be presented using textual abbreviation codes or graphic symbols, and, where commonly used, these are listed alongside the terminology definition. For ease of identification in these note pages, textual codes are presented in these notes in the following style **XW**. Code usage conforms with the following guidelines:

- Textual codes are case insensitive, although herein they are generally presented in upper case; and
- Textual codes are contextual (i.e. the same or similar combinations of characters may be used in different contexts with different meanings (for example 'PL' is used for plastic limit in the context of soil moisture condition, as well as in 'PL(A)' for point load test result in the testing results column)).

Data Integrity Codes

Subsurface investigation data recorded by Douglas Partners is generally managed in a highly structured database environment, where records "span" between a top and bottom depth interval. Depth interval "gaps" between records are considered to introduce ambiguity, and, where appropriate, our practice guidelines may require contiguous data sets. Recording meaningful data is not always appropriate (for example assigning a "strength" to a concrete pavement) and the following codes may be used to maintain contiguity in such circumstances.

Term	Description	Abbreviation Code
Core loss	No core recovery	KL
Unknown	Information was not available to allow classification of the property. For example, when augering in loose, saturated sand auger cuttings may not be returned.	UK
No data	Information required to allow classification of the property was not available. For example if drilling is commenced from the base of a hole predrilled by others	ND
Not Applicable	Derivation of the properties not appropriate or beyond the scope of the investigation. For example providing a description of the strength of a concrete pavement	NA

Graphic Symbols

Douglas Partners' logs contain a "graphic" column which provides a pictorial representation of the basic composition of the material. The symbols used are directly representing the material name stated in the adjacent "Description of Strata" column, and as such no specific graphic symbology legend has been provided in these notes.

intentionally blank

Introduction

All materials which are not considered to be "in-situ rock" are described in general accordance with the soil description model of AS 1726-2017 Part 6.1.3, and can be broken down into the following description structure:

The "classification" comprises a two character "group symbol" providing a general summary of dominant soil characteristics. The "name" summarises the particle sizes within the soil which most influence its behaviour. The detailed description presents more information about composition, condition, structure, and origin of the soil.

Classification, naming and description of soils require the relative proportion of particles of different sizes within the whole soil mixture to be considered.

Particle size designation and Behaviour Model

Solid particles within a soil are differentiated on the basis of size.

The engineering behaviour properties of a soil can subsequently be modelled to be either "fine grained" (also known as "cohesive" behaviour) or "coarse grained" ("non cohesive" behaviour), depending on the relative proportion of fine or coarse fractions in the soil mixture.

Particle Size Designation	Particle Size (mm)	Behaviour Model	
		Behaviour	Approximate Dry Mass
Boulder	>200		
Cobble	63 - 200		
Gravel ¹	2.36 - 63		
Sand ¹	0.075 - 2.36	Coarse	>65%
Silt	0.002 - 0.075		
Clay	<0.002	Fine	>35%

¹ – refer grain size subdivision descriptions below

The behaviour model boundaries defined above are not precise, and the material behaviour should be assumed from the name given to the material (which considers the particle fraction which dominates the behaviour, refer "component proportions" below), rather than strict observance of the proportions of particle sizes. For example, if a material is named a "Sandy CLAY", this is indicative that the material exhibits fine grained behaviour, even if the dry mass of coarse grained material may exceed 65%.

Component proportions

The relative proportion of the dry mass of each particle size fraction is assessed to be a "primary", "secondary", or "minor" component of the soil mixture, depending on its influence over the soil behaviour.

Component Proportion Designation	Definition ¹	Relative Proportion	
		In Fine Grained Soil	In Coarse Grained Soil
Primary	The component (particle size designation, refer above) which dominates the engineering behaviour of the soil	The clay/silt component with the greater proportion	The sand/gravel component with the greater proportion
Secondary	Any component which is not the primary, but is significant to the engineering properties of the soil	Any component with greater than 30% proportion	Any granular component with greater than 30%; or Any fine component with greater than 12%
Minor ²	Present in the soil, but not significant to its engineering properties	All other components	All other components

¹ As defined in AS1726-2017 6.1.4.4

² In the detailed material description, minor components are split into two further sub-categories. Refer "identification of minor components" below.

Composite Materials

In certain situations, a lithology description may describe more than one material, for example, collectively describing a layer of interbedded sand and clay. In such a scenario, the two materials would be described independently, with the names preceded or followed by a statement describing the arrangement by which the materials co-exist. For example, "INTERBEDDED Silty CLAY AND SAND".

Classification

The soil classification comprises a two character group symbol. The first character identifies the primary component. The second character identifies either the grading or presence of fines in a coarse grained soil, or the plasticity in a fine grained soil. Refer AS1726-2017 6.1.6 for further clarification.

Soil Name

For most soils, the name is derived with the primary component included as the noun (in upper case), preceded by any secondary components stated in an adjective form. In this way, the soil name also describes the general composition and indicates the dominant behaviour of the material.

Component 1	Prominence in Soil Name
Primary	Noun (eg "CLAY")
Secondary	Adjective modifier (eg "Sandy")
Minor	No influence

¹ – for determination of component proportions, refer component proportions on previous page

For materials which cannot be disaggregated, or which are not comprised of rock or mineral fragments, the names "ORGANIC MATTER" or "ARTIFICIAL MATERIAL" may be used, in accordance with AS1726-2017 Table 14.

Commercial or colloquial names are not used for the soil name where a component derived name is possible (for example "Gravelly SAND" rather than "CRACKER DUST").

Materials of "fill" or "topsoil" origin are generally assigned a name derived from the primary/secondary component (where appropriate). In log descriptions this is preceded by uppercase "FILL" or "TOPSOIL". Origin uncertainty is indicated in the description by the characters (?) , with the degree of uncertainty described (using the terms "probably" or "possibly" in the origin column, or at the end of the description).

Identification of minor components

Minor components are identified in the soil description immediately following the soil name. The minor component fraction is usually preceded with a term indicating the relative proportion of the component.

Minor Component Proportion Term	Relative Proportion	
	In Fine Grained Soil	In Coarse Grained Soil
With	All fractions: 15-30%	Clay/silt: 5-12% sand/gravel: 15-30%
Trace	All fractions: 0-15%	Clay/silt: 0-5% sand/gravel: 0-15%

The terms "with" and "trace" generally apply only to gravel or fine particle fractions. Where cobbles/boulders are encountered in minor proportions (generally less than about 12%) the term "occasional" may be used. This term describes the sporadic distribution of the material within the confines of the investigation excavation only, and there may be considerable variation in proportion over a wider area which is difficult to factually characterise due to the relative size of the particles and the investigation methods.

Soil Composition

Plasticity

Descriptive Term	Laboratory liquid limit range	
	Silt	Clay
Non-plastic materials	Not applicable	Not applicable
Low plasticity	≤ 50	≤ 35
Medium plasticity	Not applicable	>35 and ≤ 50
High plasticity	>50	>50

Note, Plasticity descriptions generally describe the plasticity behaviour of the whole of the fine grained soil, not individual fine grained fractions.

Grain Size

Type	Particle size (mm)
Gravel	19 - 63
	6.7 - 19
	2.36 - 6.7
Sand	0.6 - 2.36
	0.21 - 0.6
	0.075 - 0.21

Grading

Grading Term	Particle size (mm)
Well	A good representation of all particle sizes
Poorly	An excess or deficiency of particular sizes within the specified range
Uniformly	Essentially of one size
Gap	A deficiency of a particular size or size range within the total range

Note, AS1726-2017 provides terminology for additional attributes not listed here.

Soil Condition

Moisture

The moisture condition of soils is assessed relative to the plastic limit for fine grained soils, while for coarse grained soils it is assessed based on the appearance and feel of the material. The moisture condition of a material is considered to be independent of stratigraphy (although commonly these are related), and this data is presented in its own column on logs.

Applicability	Term	Tactile Assessment	Abbreviation code
Fine	Dry of plastic limit	Hard and friable or powdery	w<PL
	Near plastic limit	Can be moulded	w=PL
	Wet of plastic limit	Water residue remains on hands when handling	w>PL
	Near liquid limit	"oozes" when agitated	w=LL
	Wet of liquid limit	"oozes"	w>LL
Coarse	Dry	Non-cohesive and free running	D
	Moist	Feels cool, darkened in colour, particles may stick together	M
	Wet	Feels cool, darkened in colour, particles may stick together, free water forms when handling	W

The abbreviation code **NDF**, meaning "not-assessable due to drilling fluid use" may also be used.

Note, observations relating to free ground water or drilling fluids are provided independent of soil moisture condition.

Consistency/Density/Compaction/Cementation/Extremely Weathered Material

These concepts give an indication of how the material may respond to applied forces (when considered in conjunction with other attributes of the soil). This behaviour can vary independent of the composition of the material, and on logs these are described in an independent column and are generally mutually exclusive (i.e. it is inappropriate to describe both consistency and compaction at the same time). The method by which the behaviour is described depends on the behaviour model and other characteristics of the soil as follows:

- In fine grained soils, the "consistency" describes the ease with which the soil can be remoulded, and is generally correlated against the material's undrained shear strength;
- In granular materials, the relative density describes how tightly packed the particles are, and is generally correlated against the density index;
- In anthropogenically modified materials, the compaction of the material is described qualitatively;
- In cemented soils (both natural and anthropogenic), the cemented "strength" is described qualitatively, relative to the difficulty with which the material is disaggregated; and
- In soils of extremely weathered material origin, the engineering behaviour may be governed by relic rock features, and expected behaviour needs to be assessed based on the overall material description.

Quantitative engineering performance of these materials may be determined by laboratory testing or estimated by correlated field tests (for example penetration or shear vane testing). In some cases, performance may be assessed by tactile or other subjective methods, in which case investigation logs will show the estimated value enclosed in round brackets, for example **(VS)**.

Consistency (fine grained soils)

Consistency Term	Tactile Assessment	Undrained Shear Strength (kPa)	Abbreviation Code
Very soft	Extrudes between fingers when squeezed	<12	VS
Soft	Mouldable with light finger pressure	>12 - ≤25	S
Firm	Mouldable with strong finger pressure	>25 - ≤50	F
Stiff	Cannot be moulded by fingers	>50 - ≤100	St
Very stiff	Indented by thumbnail	>100 - ≤200	VSt
Hard	Indented by thumbnail with difficulty	>200	H
Friable	Easily crumbled or broken into small pieces by hand	-	Fr

Relative Density (coarse grained soils)

Relative Density Term	Density Index	Abbreviation Code
Very loose	<15	VL
Loose	>15 - ≤35	L
Medium dense	>35 - ≤65	MD
Dense	>65 - ≤85	D
Very dense	>85	VD

Note, tactile assessment of relative density is difficult, and generally requires penetration testing, hence a tactile assessment guide is not provided.

Soil Descriptions

Terminology
Symbols
Abbreviations

Compaction (anthropogenically modified soil)

Compaction Term	Abbreviation Code
Well compacted	WC
Poorly compacted	PC
Moderately compacted	MC
Variably compacted	VC

Cementation (natural and anthropogenic)

Cementation Term	Abbreviation Code
Moderately cemented	MOD
Weakly cemented	WEK

Extremely Weathered Material

AS1726-2017 considers weathered material to be soil if the unconfined compressive strength is less than 0.6 MPa (i.e. less than very low strength rock). These materials may be identified as "extremely weathered material" in reports and by the abbreviation code **XWM** on log sheets. This identification is not correlated to any specific qualitative or quantitative behaviour, and the engineering properties of this material must therefore be assessed according to engineering principles with reference to any relic rock structure, fabric, or texture described in the description.

Soil Origin

Term	Description	Abbreviation Code
Residual	Derived from in-situ weathering of the underlying rock	RS
Extremely weathered material	Formed from in-situ weathering of geological formations. Has strength of less than 'very low' as per as1726 but retains the structure or fabric of the parent rock.	XWM
Alluvial	Deposited by streams and rivers	ALV
Fluvial	Deposited by channel fill and overbank (natural levee, crevasse splay or flood basin)	FLV
Estuarine	Deposited in coastal estuaries	EST
Marine	Deposited in a marine environment	MAR
Lacustrine	Deposited in freshwater lakes	LAC
Aeolian	Carried and deposited by wind	AEO
Colluvial	Soil and rock debris transported down slopes by gravity	COL
Slopewash	Thin layers of soil and rock debris gradually and slowly deposited by gravity and possibly water	SW
Topsoil	Mantle of surface soil, often with high levels of organic material	TOP
Fill	Any material which has been moved by man	FILL
Littoral	Deposited on the lake or seashore	LIT
Unidentifiable	Not able to be identified	UID

Cobbles and Boulders

The presence of particles considered to be "oversize" may be described using one of the following strategies:

- Oversize encountered in a minor proportion (when considered relative to the wider area) are noted in the soil description; or
- Where a significant proportion of oversize is encountered, the cobbles/boulders are described independent of the soil description, in a similar manner to composite soils (described above) but qualified with "MIXTURE OF".

intentionally blank

Rock Strength

Rock strength is defined by the unconfined compressive strength, and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $I_{s(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Unconfined Compressive Strength (MPa)	Point Load Index ¹ $I_{s(50)}$ MPa	Abbreviation Code
Very low	0.6 - 2	0.03 - 0.1	VL
Low	2 - 6	0.1 - 0.3	L
Medium	6 - 20	0.3 - 1.0	M
High	20 - 60	1 - 3	H
Very high	60 - 200	3 - 10	VH
Extremely high	>200	>10	EH

¹ Rock strength classification is based on UCS. The UCS to $I_{s(50)}$ ratio varies significantly for different rock types and specific ratios may be required for each site. The point load Index ranges shown above are as suggested in AS1726 and should not be relied upon without supporting evidence.

The following abbreviation codes are used for soil layers or seams of material "within rock" but for which the equivalent UCS strength is less than 0.6 MPa.

Scenario	Abbreviation Code
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The properties of the material encountered over this interval are described in the "Description of Strata" and soil properties columns.	SOIL
The material encountered has an equivalent UCS strength of less than 0.6 MPa, and therefore is considered to be soil (as per Note 1 of Table 20 of AS 1726-2017). The prominence of the material is such that it can be considered to be a seam (as defined in Table 22 of AS1726-2017) and the properties of the material are described in the defect column.	SEAM

Degree of Weathering

The degree of weathering of rock is classified as follows:

Weathering Term	Description	Abbreviation Code
Residual Soil ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	RS
Extremely weathered ¹	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible	XW
Highly weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.	HW
Moderately weathered	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MW
Slightly weathered	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.	SW
Fresh	No signs of decomposition or staining.	FR
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.	DW

¹ The parent rock type, of which the residual/extremely weathered material is a derivative, will be stated in the description (where discernible).

Degree of Alteration

The degree of alteration of the rock material (physical or chemical changes caused by hot gasses or liquids at depth) is classified as follows:

Term	Description	Abbreviation Code
Extremely altered	Material is altered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	XA
Highly altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is changed by alteration. Some primary minerals are altered to clay minerals. Porosity may be increased by leaching or may be decreased due to precipitation of secondary materials in pores.	HA
Moderately altered	The whole of the rock material is discoloured, usually by staining or bleaching to the extent that the colour of the original rock is not recognisable but shows little or no change of strength from fresh rock.	MA
Slightly altered	Rock is slightly discoloured but shows little or no change of strength from fresh rock	SA
Note: If HA and MA cannot be differentiated use DA (see below)		
Distinctly altered	Rock strength usually changed by alteration. The rock may be highly discoloured, usually by staining or bleaching. Porosity may be increased by leaching or may be decreased due to precipitation of secondary minerals in pores.	DA

Degree of Fracturing

The following descriptive classification apply to the spacing of natural occurring fractures in the rock mass. It includes bedding plane partings, joints and other defects, but excludes drilling breaks. These terms are generally not required on investigation logs where fracture spacing is presented as a histogram, and where used are presented in an unabbreviated format.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

$$RQD \% = \frac{\text{cumulative length of 'sound' core sections} > 100 \text{ mm long}}{\text{total drilled length of section being assessed}}$$

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e., drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

These terms may be used to describe the spacing of bedding partings in sedimentary rocks. Where used, these terms are generally presented in an unabbreviated format

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Rock Descriptions

Terminology
Symbols
Abbreviations

Defect Descriptions

Defect Type

Term	Abbreviation Code
Bedding plane	B
Cleavage	CL
Crushed seam	CS
Crushed zone	CZ
Drilling break	DB
Decomposed seam	DS
Drill lift	DL
Extremely Weathered seam	EW
Fault	F
Fracture	FC
Fragmented	FG
Handling break	HB
Infilled seam	IS
Joint	JT
Lamination	LAM
Shear seam	SS
Shear zone	SZ
Vein	VN
Mechanical break	MB
Parting	P
Sheared Surface	S

Rock Defect Orientation

Term	Abbreviation Code
Horizontal	H
Vertical	V
Sub-horizontal	SH
Sub-vertical	SV

Rock Defect Coating

Term	Abbreviation Code
Clean	CN
Coating	CT
Healed	HE
Infilled	INF
Stained	SN
Tight	TI
Veneer	VNR

Rock Defect Infill

Term	Abbreviation Code
Calcite	CA
Carbonaceous	CBS
Clay	CLAY
Iron oxide	FE
Manganese	MN
Pyrite	Py
Secondary material	MS
Silt	M
Quartz	Qz
Unidentified material	MU

Rock Defect Shape/Planarity

Term	Abbreviation Code
Curved	CU
Discontinuous	DIS
Irregular	IR
Planar	PR
Stepped	ST
Undulating	UN

Rock Defect Roughness

Term	Abbreviation Code
Polished	PO
Rough	RF
Smooth	SM
Slickensided	SL
Very rough	VR

Defect Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

intentionally blank

Sampling and Testing

A record of samples retained, and field testing performed is usually shown on a Douglas Partners' log with samples appearing to the left of a depth scale, and selected field and laboratory testing (including results, where relevant) appearing to the right of the scale, as illustrated below:

SAMPLE			TEST TYPE	TESTING	
SAMPLE REMARKS	TYPE	INTERVAL		DEPTH (m)	RESULTS AND REMARKS
	SPT		SPT	1.0 1.45	4,9,11 N=20

Sampling

The type or intended purpose for which a sample was taken is indicated by the following abbreviation codes.

Sample Type	Code
Auger sample	A
Acid Sulfate sample	ASS
Bulk sample	B
Core sample	C
Disturbed sample	D
Environmental sample	ES
Driven Tube sample	DT
Gas sample	G
Piston sample	P
Sample from SPT test	SPT
Undisturbed tube sample	U ¹
Water sample	W
Material Sample	MT
Core sample for unconfined compressive strength testing	UCS

¹ – numeric suffixes indicate tube diameter/width in mm

The above codes only indicate that a sample was retained, and not that testing was scheduled or performed.

Field and Laboratory Testing

A record that field and laboratory testing was performed is indicated by the following abbreviation codes.

Test Type	Code
Pocket penetrometer (kPa)	PP
Photo ionisation detector (ppm)	PID
Standard Penetration Test x/y = x blows for y mm penetration HB = hammer bouncing HW = fell under weight of hammer	SPT
Shear vane (kPa)	V
Unconfined compressive strength, (MPa)	UCS
Point load test, (MPa), axial (A), diametric (D), irregular (I)	PLT(…)
Dynamic cone penetrometer, followed by blow count penetration increment in mm (cone tip, generally in accordance with ASI289.6.3.2)	DCP9/150
Perth sand penetrometer, followed by blow count penetration increment in mm (flat tip, generally in accordance with ASI289.6.3.3)	PSP/150
Dynamic probe super heavy, followed by blow count penetration increment in mm	DPSH/100

Groundwater Observations

	water seepage/inflow
	water seepage/outflow
	standing or observed water level
	no free groundwater observed
	observations obscured by drilling fluids

Drilling or Excavation Methods/Tools

The drilling/excavation methods used to perform the investigation may be shown either in a dedicated column down the left-hand edge of the log, or stated in the log footer. In some circumstances abbreviation codes may be used.

Method	Abbreviation Code
Direct Push	DP
Solid flight auger. Suffixes: /T = tungsten carbide tip, /V = v-shaped tip	AD ¹
Air Track	AT
Diatube	DT ¹
Hand auger	HA ¹
Hand tools (unspecified)	HAND
Existing exposure	X
Hollow flight auger	HSA ¹
HQ coring	HQ3
HMLC series coring	HMLC
NMLC series coring	NMLC
NQ coring	NQ3
PQ coring	PQ3
Predrilled	PD
Push tube	PT ¹
Ripping tyne/ripper	R
Rock roller	RR ¹
Rock breaker/hydraulic hammer	EH
Sonic drilling	SON ¹
Mud/blade bucket	MB ¹
Toothed bucket	TB ¹
Vibrocoring	VC ¹
Vacuum excavation	VE
Wash bore (unspecified bit type)	WB ¹

¹ – numeric suffixes indicate tool diameter/width in mm

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

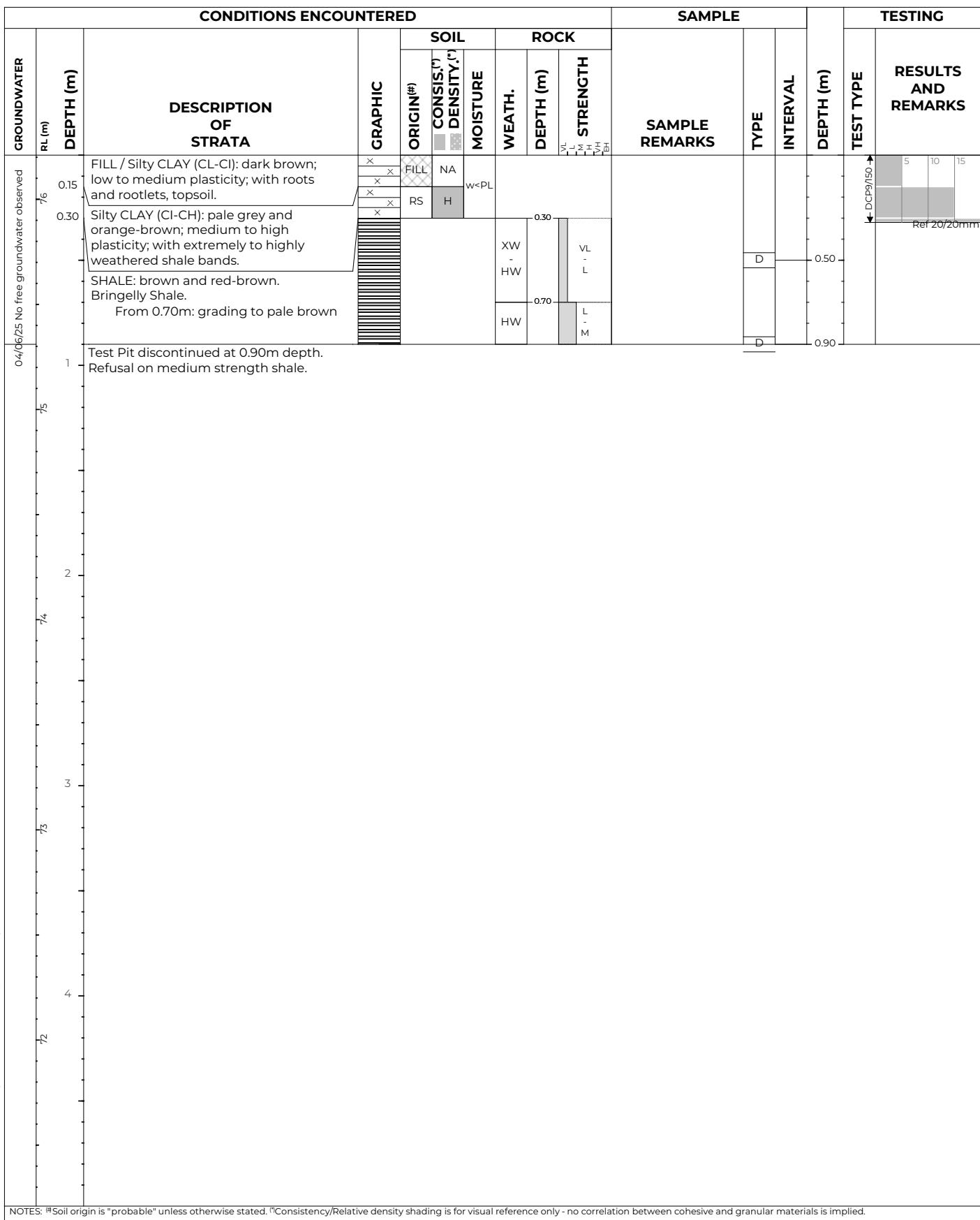
PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.2 AHD

COORDINATE: E:291009.2, N:6240392.0

DATUM/GRID: MGA2020 Zone 56


DIP/AZIMUTH: 90°/---

LOCATION ID: 1

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.9 AHD

COORDINATE: E:291017.1, N:6240364.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 2

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.0 AHD

COORDINATE: E:290989.8, N:6240350.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 3

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.3 AHD

COORDINATE: E:291008.9, N:6240323.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 4

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.4 AHD

COORDINATE: E:290981.5, N:6240309.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 5

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ^(a)Soil origin is "probable" unless otherwise stated. ^(b)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.0 AHD
COORDINATE: E:291000.0, N:6240286.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°
LOCATION ID: 6
PROJECT No: 204684.17
DATE: 04/06/25
SHEET: 1 of 1

GROUNDWATER	DEPTH (m)	CONDITIONS ENCOUNTERED				SAMPLE	TESTING AND REMARKS
		DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)		
04/06/25 No free groundwater observed	0.10	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity, with roots and rootlets, topsoil. FILL / Silty CLAY (Cl): orange-brown and pale brown; medium plasticity; trace fine to coarse gravel.		FILL	NA		
	1.00						
	1.20	Silty CLAY (Cl-CH): orange-brown mottled pale grey; medium to high plasticity; trace fine gravel and rootlets.		VSt	w<PL		
	1.70	From 1.70m: grading to pale grey, with fine ironstone gravel and extremely weathered shale bands		RS	H		
	2.00						
	2.50	Test Pit discontinued at 2.50m depth. Limit of investigation.				D	PP >600kPa
	3.00						
	4.00						
	5.00						

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.1 AHD
COORDINATE: E:290976.1, N:6240271.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°

LOCATION ID: 7
PROJECT No: 204684.17
DATE: 04/06/25
SHEET: 1 of 1

GROUNDWATER	DEPTH (m)	CONDITIONS ENCOUNTERED				MOISTURE	SAMPLE		TESTING AND REMARKS
		DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)		TYPE	INTERVAL	
04/06/25 No free groundwater observed	0.15	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity, with roots and rootlets, topsoil. FILL / Silty CLAY (Cl-CH): pale brown; medium to high plasticity; trace fine to coarse gravel.		FILL FILL	NA				
	0.50	Silty CLAY (Cl-CH): orange-brown mottled pale grey; medium to high plasticity; trace rootlets.		RS	VSt	W<PL	D U50	0.50	DCP9/50
	1.0	From 1.60m: grading to orange-brown and pale grey, with shale and ironstone gravel and extremely weathered shale bands			VSt - H		D	0.65	
	2.0						D	1.00	
	2.50	Test Pit discontinued at 2.50m depth. Limit of investigation.					D	1.50	PP - 420-600kPa
	2.00							2.00	PP - 310-450kPa
	2.50							2.50	PP - 510->600kPa
	3.0								
	4.0								
	5.0								
	6.0								
	7.0								
	8.0								
	9.0								
	10.0								
	11.0								
	12.0								
	13.0								
	14.0								
	15.0								

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: AS

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 74.6 AHD
COORDINATE: E:290992.8, N:6240243.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°
LOCATION ID: 8
PROJECT No: 204684.17
DATE: 04/06/25
SHEET: 1 of 1

GROUNDWATER	CONDITIONS ENCOUNTERED				SAMPLE	TESTING AND REMARKS
	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)		
04/06/25 No free groundwater observed	0.10	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity, with roots and rootlets, topsoil. FILL / Silty CLAY (Cl): pale grey and orange-brown; medium plasticity; trace fine to coarse gravel.				
	0.40					
	1.00					
	1.20	Silty CLAY (Cl-CH): orange-brown mottled pale grey; medium to high plasticity; trace fine gravel and rootlets.		W<PL		
	1.40					
	2.00	From 2.00m: grading to pale grey, with extremely to highly weathered shale bands				
	2.20					
	2.50	Test Pit discontinued at 2.50m depth. Limit of investigation.				
	2.60					
	3.00					
	3.40					
	4.00					
	4.40					
	5.00					

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: AS

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 74.6 AHD

COORDINATE: E:290967.1, N:6240228.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 9

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 74.3 AHD

COORDINATE: E:290983.9, N:6240202.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 10

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

10 of 10 pages

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Oyake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 74.0 AHD

COORDINATE: E:290955.0, N:6240168.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 11

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Ouake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 74.9 AHD

COORDINATE: E:290929.2, N:6240190.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 12

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

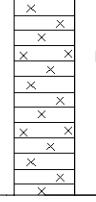
PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:


Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.5 AHD
COORDINATE: E:290954.6, N:6240220.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°
LOCATION ID: 13
PROJECT No: 204684.17
DATE: 02/06/25
SHEET: 1 of 1

GROUNDWATER	DEPTH (m)	CONDITIONS ENCOUNTERED				SAMPLE	TESTING AND REMARKS		
		DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)				
02/06/25 No free groundwater observed	0.30	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity, with rootlets, trace fine to medium gravel, topsoil.		FILL	NA				
	0.75	FILL / Silty CLAY (CH): red-brown and pale grey; high plasticity; trace fine to medium gravel.		FILL					
	1.0								
	1.60	Silty CLAY (CI-CH): red-brown; medium to high plasticity; trace fine gravel.		VSt - H					
	2.0	From 2.20m: grading to pale grey mottled red, with very low strength shale bands		RS	H				
	2.50	Test Pit discontinued at 2.50m depth. Limit of investigation .							
	3.0								
	4.0								
	4.7								
	5.2								
	5.7								
	6.2								
	6.7								
	7.2								
	7.7								
NOTES: ^(#) Soil origin is "probable" unless otherwise stated. ^(*) Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.									

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.5 AHD

COORDINATE: E:290940.3, N:6240244.0 **PROJECT No:** 204684.17

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---° **SHEET:** 1 of 1

LOCATION ID: 14

PROJECT No: 20

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.9 AHD

COORDINATE: E:290960.0, N:6240260.0 **PROJECT No:** 204684.17

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 15

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.0 AHD

COORDINATE: E:290948.9, N:6240286

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 16

• **PROJECT No:** 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Ouake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

WILSON

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.4 AHD
COORDINATE: E:290971.0, N:6240303.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°

LOCATION ID: 17
PROJECT No: 204684.17
DATE: 02/06/25
SHEET: 1 of 1

GROUNDWATER	DEPTH (m)	CONDITIONS ENCOUNTERED			SAMPLE	TESTING AND REMARKS			
		DESCRIPTION OF STRATA	GRAPHIC	ORIGIN ^(#)	CONSIS. ^(*)	DENSITY. ^(*)	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
02/06/25 No free groundwater observed	0.20	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity, with rootlets, trace fine to medium gravel, topsoil. FILL / Silty CLAY (Cl): red-brown and pale grey; medium plasticity; trace fine to medium gravel.							
	1.0								
	1.30	Silty CLAY (Cl-CH): red-brown; medium to high plasticity; trace fine gravel and rootlets. From 1.80m: grading to pale grey mottled red From 2.20m: with very low strength shale bands			W<PL				
	2.0								
	2.50	Test Pit discontinued at 2.50m depth. Limit of investigation .							
	3								
	4								
	4.5								
	5								
	6								
	7								
	8								
	9								
	10								
	11								
	12								
	13								
	14								
	15								
NOTES: ^(#) Soil origin is "probable" unless otherwise stated. ^(*) Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.									

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.4 AHD

COORDINATE: E:290955.6, N:6240323.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 18

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Ouake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.7 AHD

COORDINATE: E:290975.0, N:6240342.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 19

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.8 AHD

COORDINATE: E:290963.9, N:6240368.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 20

• **PROJECT No:** 204684.17

DATE: 02/06/25

SHEET: 1 of 1

CONDITIONS ENCOUNTERED								SAMPLE			TESTING			
GROUNDWATER	RL (m)	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK		SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
					ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(#)	MOISTURE	WEATH.						
02/06/25	No free groundwater observed		FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity; with rootlets, trace fine to medium gravel, topsoil. Silty CLAY (Cl-CH): pale grey mottled red; medium to high plasticity; with very low strength shale bands. SHALE: pale brown and grey. Bringelly Shale. Test Pit discontinued at 0.80m depth. Refusal on low strength shale.		FILL RS	NA H	W<PL HW VL-L	0.60					DCP9/150	5 10 15 Ref 20/80mm
										D	0.50			
										D	0.70			

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.1 AHD

COORDINATE: E:290983.5, N:6240409.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 21

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

NOTES: ^{1a}Soil origin is "probable" unless otherwise stated. ^{1b}Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.1 AHD

COORDINATE: E:290943.1, N:6240381.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 22

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.6 AHD

COORDINATE: E:290919.6, N:6240366.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 23

PROJECT No: 204684.17

DATE: 02/06/25

SHEET: 1 of 1

Generated with CORE-CS by Geroc - Soil with Simple Rock Log

NOTES: ^(a)Soil origin is "probable" unless otherwise stated. ^(b)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

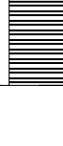
OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions


 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.8 AHD
COORDINATE: E:290935.9, N:6240344.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°

LOCATION ID: 24
PROJECT No: 204684.17
DATE: 03/06/25
SHEET: 1 of 1

GROUNDWATER	DEPTH (m)	CONDITIONS ENCOUNTERED						SAMPLE REMARKS	SAMPLE			TESTING		
		DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK			TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS	
				ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.							
03/06/25 No free groundwater observed	0.20	FILL / Silty CLAY (CL-Cl): brown; low to medium plasticity; with fine to medium gravel and rootlets, topsoil. Silty CLAY (CI-CH): pale grey mottled red; medium to high plasticity. From 0.60m: with very low strength shale bands		FILL RS	NA VSt - H H	W<PL					0.50	DCP9150	5 10 15	
	1.00	SHALE: pale grey, with extremely weathered bands. Bringelly Shale.					HW	1.00	VL - L		1.00		Ref 10/50mm	
	1.30	Test Pit discontinued at 1.30m depth. Refusal on low strength shale.												
	2													
	3													
	4													
	5													
	6													
	7													
	8													
	9													
	10													
	11													
	12													
	13													
	14													
	15													
NOTES: ^(#) Soil origin is "probable" unless otherwise stated. ^(*) Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.														

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: TKB

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.1 AHD

COORDINATE: E:290914.6, N:6240321.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 25

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.4 AHD

COORDINATE: E:290926.8, N:6240299.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 26

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Ouake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.8 AHD

COORDINATE: E:290900.9, N:6240281.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 27

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

ANSWER

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

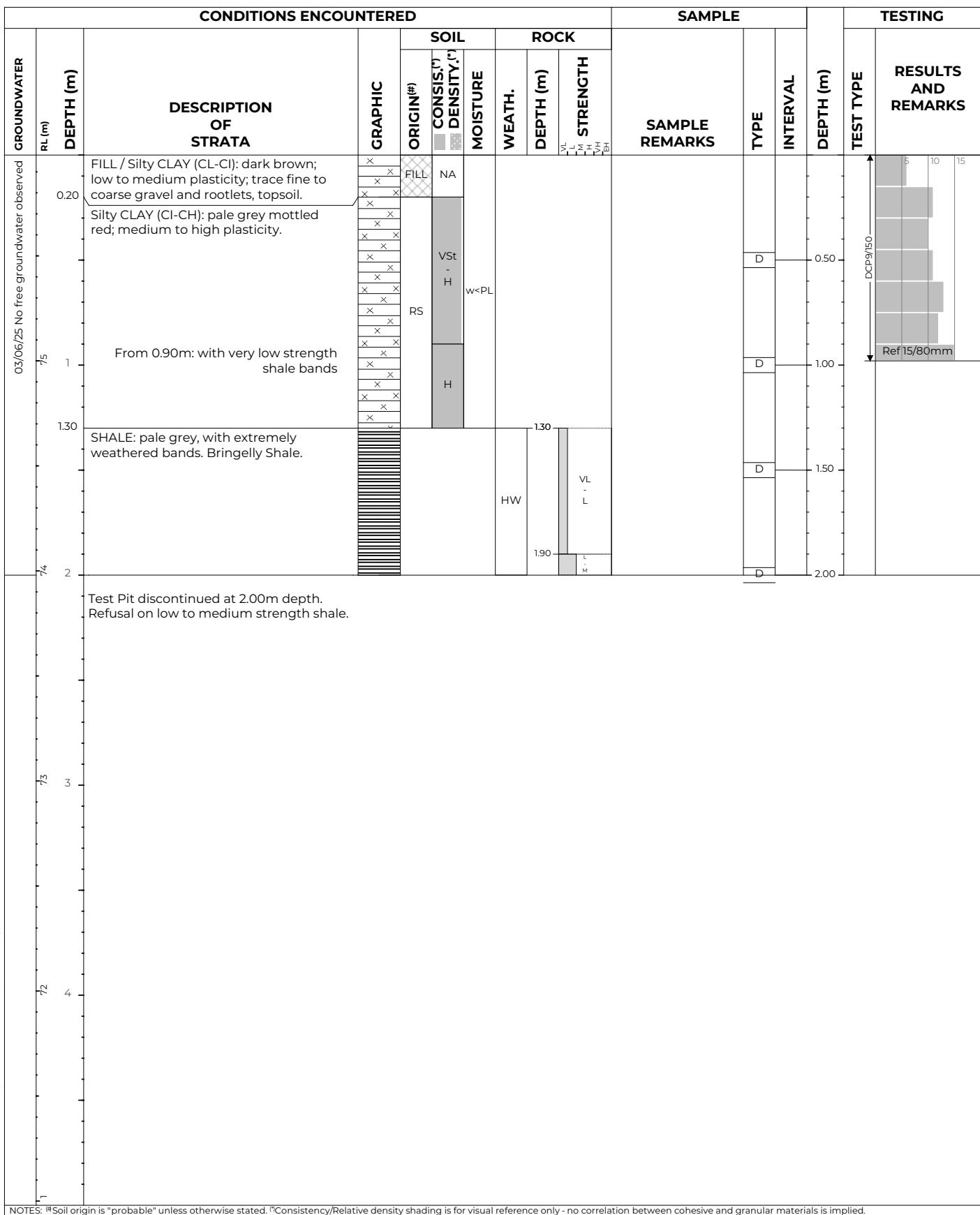
OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions


 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd
PROJECT: Proposed Residential Subdivision
LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.0 AHD
COORDINATE: E:290917.9, N:6240254.0
DATUM/GRID: MGA2020 Zone 56
DIP/AZIMUTH: 90°/---°

LOCATION ID: 28
PROJECT No: 204684.17
DATE: 03/06/25
SHEET: 1 of 1

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: TKB

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

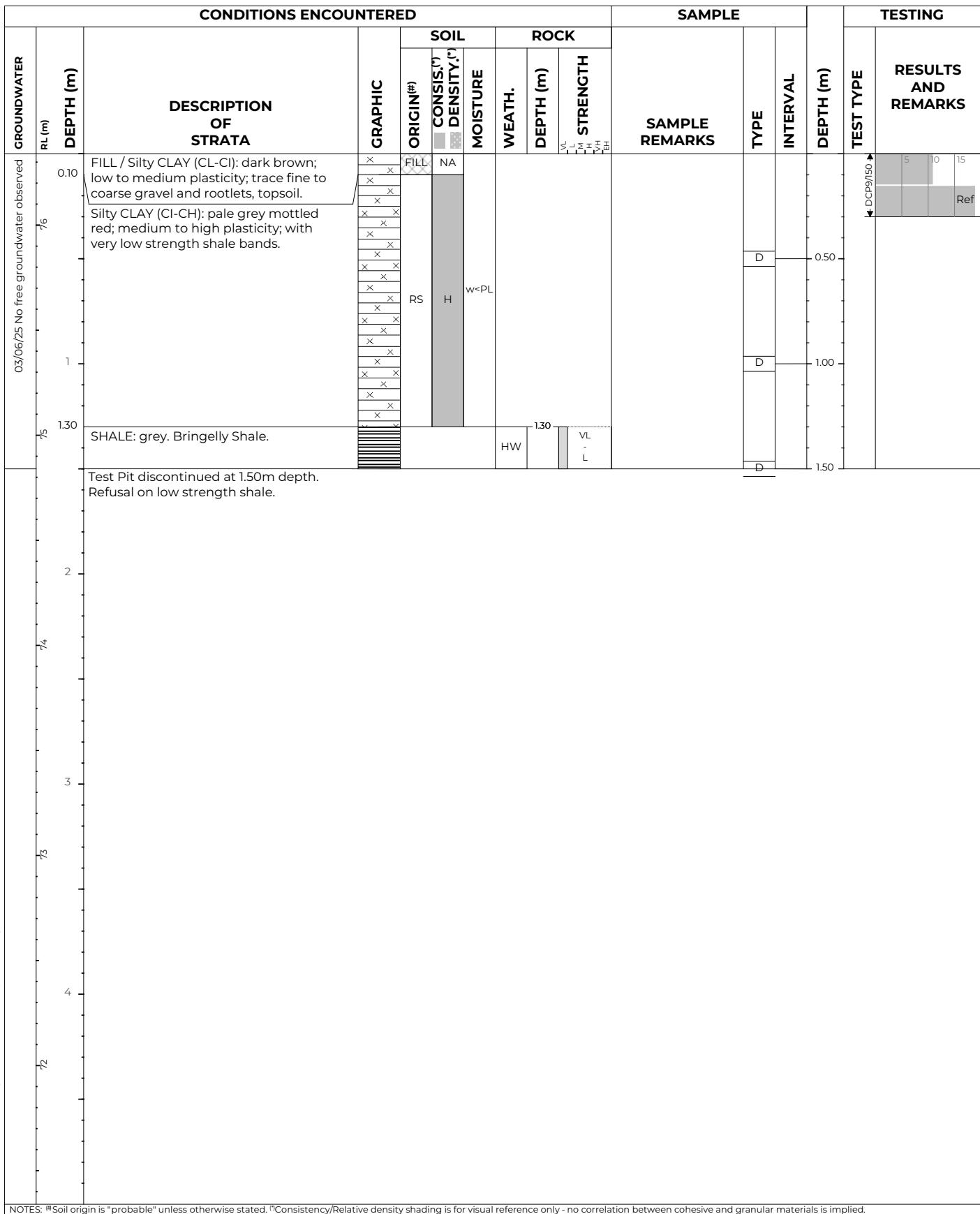
PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.3 AHD

COORDINATE: E:290893.1, N:6240239.0

DATUM/GRID: MGA2020 Zone 56


DIP/AZIMUTH: 90°/---°

LOCATION ID: 29

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

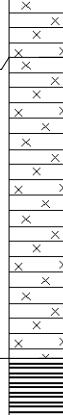
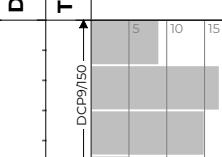
PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.6 AHD

COORDINATE: E:290910.0, N:6240212.0

DATUM/GRID: MGA2020 Zone 56



DIP/AZIMUTH: 90°/---°

LOCATION ID: 30

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

GROUNDWATER	DEPTH (m)	CONDITIONS ENCOUNTERED						SAMPLE REMARKS	SAMPLE			TESTING		
		DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK			TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS	
				ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.							
03/06/25 No free groundwater observed	0.20	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity; trace fine to coarse gravel and rootlets, topsoil. Silty CLAY (CI-CH): pale grey mottled red; medium to high plasticity; with very low strength shale bands.		FILL	NA						0.50	DCP9/150		
	1										1.00			
	1.20	SHALE: grey. Bringelly Shale.					HW	1.20			1.40			
		Test Pit discontinued at 1.40m depth. Refusal on low strength shale.												
	2													
	3													
	4													
	5													
	6													
	7													
	8													
	9													
	10													
	11													
	12													
	13													
	14													
	15													

Generated with CORE-GS by Geric - Soil with Simple Rock Log

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: TKB

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 75.8 AHD

COORDINATE: E:290886.2, N:6240186.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 31

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

CONDITIONS ENCOUNTERED							SAMPLE			TESTING			
GROUNDWATER	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK		SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
				ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.						
03/06/25 No free groundwater observed	0.30	FILL / Silty CLAY (CL-Cl): brown; low to medium plasticity; with fine to coarse gravel, trace rootlets, topsoil.		FILL	NA	w<PL					DCP9/150		
	0.30	SHALE: pale brown and grey, with extremely weathered bands. Bringelly Shale.					HW	0.30	VL - L	D	0.50		
	0.60	Test Pit discontinued at 0.60m depth. Refusal on low strength shale.											
	1												
	2												
	3												
	4												
	5												
	6												
	7												
	8												
	9												
	10												
	11												
	12												
	13												
	14												
	15												

Generated with CORE-GS by Geric - Soil with Simple Rock Log

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: TKB

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 76.2 AHD

COORDINATE: E:290863.1, N:6240156.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 32

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ^(a)Soil origin is "probable" unless otherwise stated. ^(b)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.8 AHD

COORDINATE: E:290857.1, N:6240202.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 33

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.7 AHD

COORDINATE: E:290879.6, N:6240223.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 34

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 78.4 AHD

COORDINATE: E:290867.1, N:6240253.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 35

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 78.3 AHD

COORDINATE: E:290888.3, N:6240269.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 36

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

NOTES: ^{1a}Soil origin is "probable" unless otherwise stated. ^{1b}Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.6 AHD

COORDINATE: E:290797.2, N:6240146.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 37

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

ANSWER

NOTES: ^(a)Soil origin is "probable" unless otherwise stated. ^(b)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 77.5 AHD

COORDINATE: E:290824.8, N:6240166.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 38

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

Generated with CORE-GS by Geroc - Soil with Simple Rock Log

NOTES: ⁽¹⁾Soil origin is "probable" unless otherwise stated. ⁽²⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 78.3 AHD

COORDINATE: E:290808.7, N:6240190.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 39

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

10 of 10 pages

NOTES: ^aSoil origin is "probable" unless otherwise stated. ^bConsistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: TKB

METHOD: 450mm toothed bucket

REMARKS:

REMARKS

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

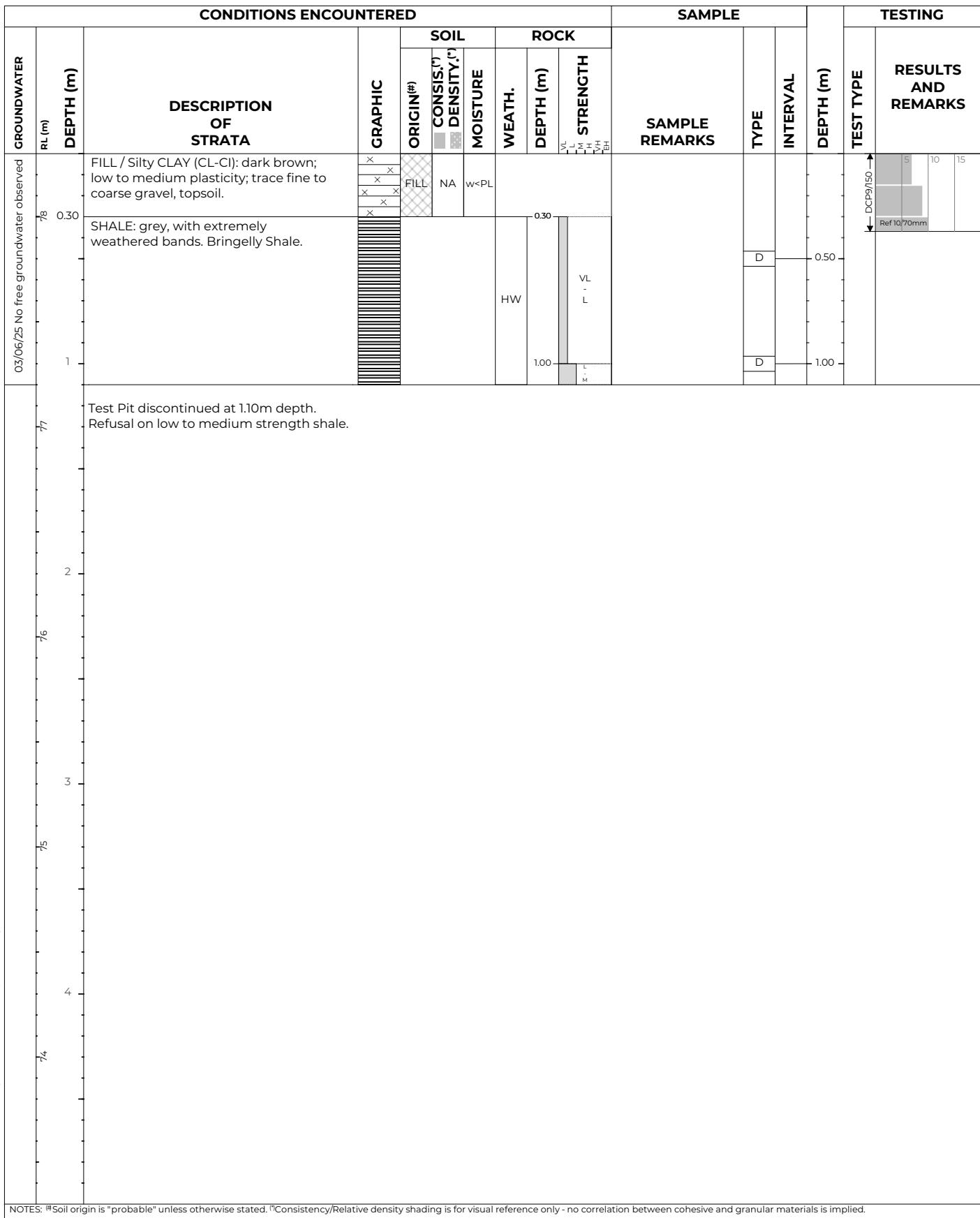
PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 78.3 AHD

COORDINATE: E:290832.7, N:6240207.0

DATUM/GRID: MGA2020 Zone 56


DIP/AZIMUTH: 90°/---°

LOCATION ID: 40

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

Generated with CORE-GS by Geric - Soil with Simple Rock Log

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: TKB

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 79.2 AHD

COORDINATE: E:290814.6, N:6240228.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 41

PROJECT No: 204684.17

DATE: 03/06/25

SHEET: 1 of 1

CONDITIONS ENCOUNTERED							SAMPLE			TESTING			
GROUNDWATER	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK		SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
				ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.						
03/06/25 No free groundwater observed	0.00	FILL / Silty CLAY (CL-CL): dark brown; low to medium plasticity; with fine to coarse gravel, topsoil. SHALE: grey, with extremely weathered bands. Bringelly Shale.		X X X	FILL NA	w<PL	HW	0.20	VL L	D	0.50	DCP9150	5 10 15 Ref 17/100mm
Test Pit discontinued at 0.50m depth. Refusal on low to medium strength shale.													
79	0.20												
78	1												
77	2												
76	3												
75	4												

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: TKB

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 80.1 AHD

COORDINATE: E:290780.9, N:6240207.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 42

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

CONDITIONS ENCOUNTERED							SAMPLE			TESTING			
GROUNDWATER	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK		SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
				ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.						
80	0.20	FILL / Silty CLAY (CL-CL): dark brown; low to medium plasticity; with roots and rootlets, topsoil. SANDSTONE: pale brown. Bringelly Shale.		X X X	FILL NA	w<PL	HW	0.20	L M		0.50	DCP9/150	5 10 15 Ref 15/130mm
0.4/06/25 No free groundwater observed	1												
79	2												
78	3												
77	4												
76	5												
75	6												
74	7												
73	8												
72	9												
71	10												
70	11												
69	12												
68	13												
67	14												
66	15												
65	16												
64	17												
63	18												
62	19												
61	20												
60	21												
59	22												
58	23												
57	24												
56	25												
55	26												
54	27												
53	28												
52	29												
51	30												
50	31												
49	32												
48	33												
47	34												
46	35												
45	36												
44	37												
43	38												
42	39												
41	40												
40	41												
39	42												
38	43												
37	44												
36	45												
35	46												
34	47												
33	48												
32	49												
31	50												
30	51												
29	52												
28	53												
27	54												
26	55												
25	56												
24	57												
23	58												
22	59												
21	60												
20	61												
19	62												
18	63												
17	64												
16	65												
15	66												
14	67												
13	68												
12	69												
11	70												
10	71												
9	72												
8	73												
7	74												
6	75												
5	76												
4	77												
3	78												
2	79												
1	80												
0	81												

Generated with CORE-GS by Geric - Soil with Simple Rock Log

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

Refer to explanatory notes for symbol and abbreviation definitions

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: AS

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 78.9 AHD

COORDINATE: E:290774.5, N:6240180.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 43

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

Generated with CORE-GS by Geroc - Soil with Simple Rock Log

NOTES: ⁽⁴⁾Soil origin is "probable" unless otherwise stated. ⁽⁵⁾Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 78.9 AHD

COORDINATE: E:290750.4, N:6240184.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 44

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

NOTES: ^(a)Soil origin is "probable" unless otherwise stated. ^(b)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 80.3 AHD

COORDINATE: E:290736.0, N:6240213.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---°

LOCATION ID: 45

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

CONDITIONS ENCOUNTERED						SAMPLE			TESTING				
GROUNDWATER	DEPTH (m)	DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK		SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
				ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.						
04/06/25 No free groundwater observed	RL (m)												
80	0.10	FILL / Silty CLAY (CL-Cl): dark brown; low to medium plasticity; with roots/rootlets, topsoil.											
80	0.20	Silty CLAY (Cl-CH): orange-brown; medium to high plasticity; trace fine coarse gravel.											
80	0.30	SHALE: brown and dark grey/blue. Bringelly Shale.											
80	0.30	Test Pit discontinued at 0.30m depth. Refusal on medium strength shale.											
79	1												
78	2												
77	3												
76	4												
75	5												
74	6												
73	7												
72	8												
71	9												
70	10												
69	11												
68	12												
67	13												
66	14												
65	15												
64	16												
63	17												
62	18												
61	19												
60	20												
59	21												
58	22												
57	23												
56	24												
55	25												
54	26												
53	27												
52	28												
51	29												
50	30												
49	31												
48	32												
47	33												
46	34												
45	35												
44	36												
43	37												
42	38												
41	39												
40	40												
39	41												
38	42												
37	43												
36	44												
35	45												
34	46												
33	47												
32	48												
31	49												
30	50												
29	51												
28	52												
27	53												
26	54												
25	55												
24	56												
23	57												
22	58												
21	59												
20	60												
19	61												
18	62												
17	63												
16	64												
15	65												
14	66												
13	67												
12	68												
11	69												
10	70												
9	71												
8	72												
7	73												
6	74												
5	75												
4	76												
3	77												
2	78												
1	79												
0	80												

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator **OPERATOR:** Quake Excavations **LOGGED:** AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

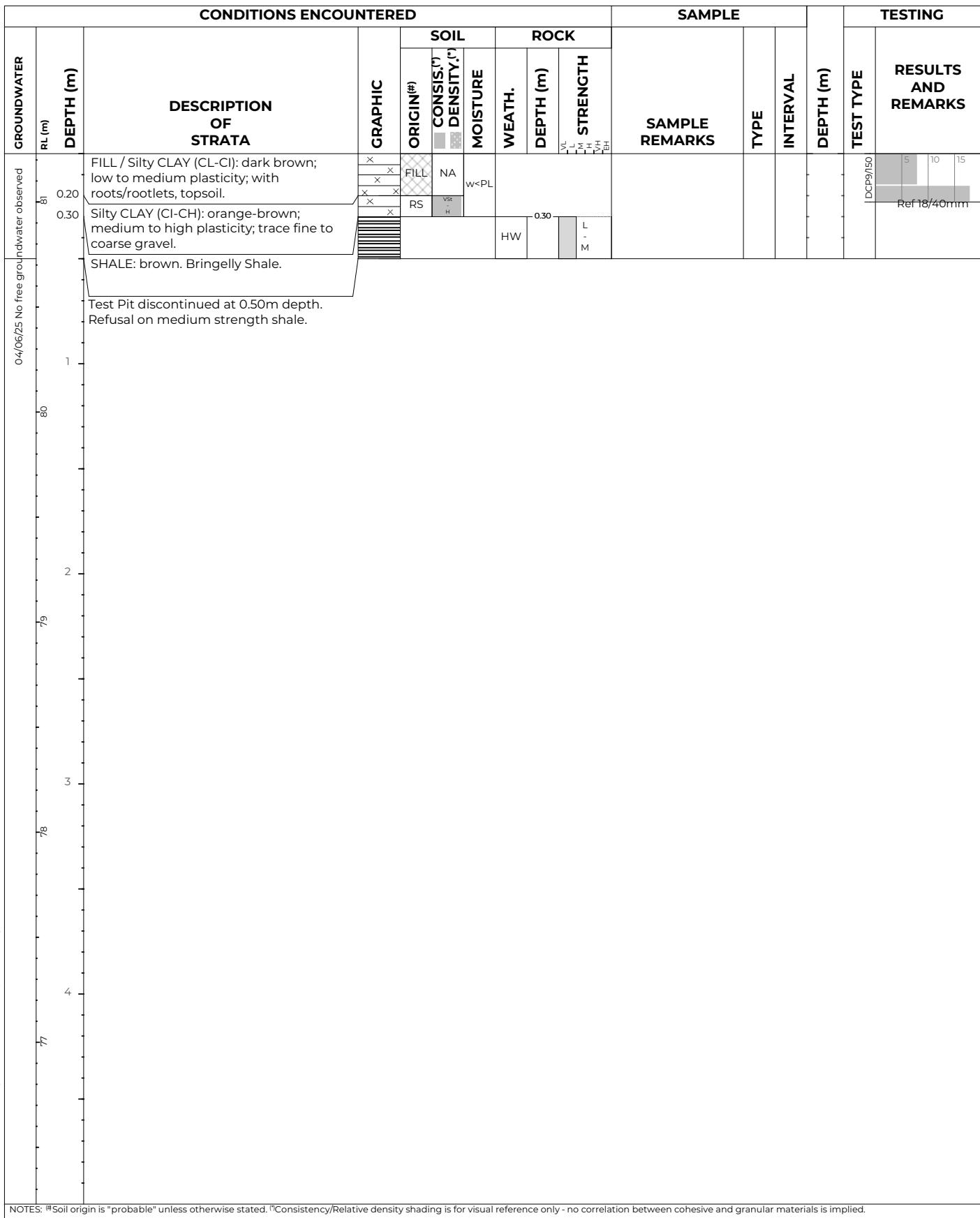
PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 81.2 AHD

COORDINATE: E:290757.6, N:6240236.0

DATUM/GRID: MGA2020 Zone 56


DIP/AZIMUTH: 90°/---°

LOCATION ID: 46

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: AS

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 82.0 AHD

LOCATION ID: 47

COORDINATE: E:290742.0, N:6240263.0

PROJECT No: 204684.17

DATUM/GRID: MGA2020 Zone 56

DATE: 04/06/25

DIP/AZIMUTH: 90°/---°

SHEET: 1 of 1

DEPTH (m)	CONDITIONS ENCOUNTERED							SAMPLE REMARKS	SAMPLE			TESTING	
	GROUNDWATER	RL (m)	DESCRIPTION OF STRATA	GRAPHIC	SOIL		ROCK			TYPE	INTERVAL	DEPTH (m)	TEST TYPE
					ORIGIN ^(#)	CONSIS. ^(*) DENSITY. ^(*)	MOISTURE	WEATH.	DEPTH (m)				
0.4/06/25 No free groundwater observed			FILL / Silty CLAY (CL-Cl): brown; low to medium plasticity; with roots/rootlets, topsoil.		FILL	NA	W<PL					0.50	DCP9150
		0.25	SHALE: brown and dark grey/blue. Bringelly Shale.					HW	0.25	L - M	D		Ref 20/50mm
			Test Pit discontinued at 0.50m depth. Refusal on medium strength shale.										
		81											
		80											
		79											
		78											
		77											
		76											
		75											
		74											
		73											
		72											
		71											
		70											
		69											
		68											
		67											
		66											
		65											
		64											
		63											
		62											
		61											
		60											
		59											
		58											
		57											
		56											
		55											
		54											
		53											
		52											
		51											
		50											
		49											
		48											
		47											
		46											
		45											
		44											
		43											
		42											
		41											
		40											
		39											
		38											
		37											
		36											
		35											
		34											
		33											
		32											
		31											
		30											
		29											
		28											
		27											
		26											
		25											
		24											
		23											
		22											
		21											
		20											
		19											
		18											
		17											
		16											
		15											
		14											
		13											
		12											
		11											
		10											
		9											
		8											
		7											
		6											
		5											
		4											
		3											
		2											
		1											
		0											

Generated with CORE-GS by Geric - Soil with Simple Rock Log

Refer to explanatory notes for symbol and abbreviation definitions

 Douglas
PARTNERS

PLANT: Hyundai 60CR-9 excavator

METHOD: 450mm toothed bucket

REMARKS:

OPERATOR: Quake Excavations

LOGGED: AS

NOTES: ^(#)Soil origin is "probable" unless otherwise stated. ^(*)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

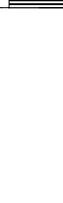
PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 82.0 AHD

COORDINATE: E:290761.3, N:6240289.0

DATUM/GRID: MGA2020 Zone 56


DIP/AZIMUTH: 90°/---°

LOCATION ID: 48

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

		CONDITIONS ENCOUNTERED						SAMPLE			TESTING						
GROUNDWATER	DEPTH (m)	DESCRIPTION OF STRATA		GRAPHIC	ORIGIN ^(#)	SOIL CONSIS. ^(*) DENSITY. ^(*)	ROCK	MOISTURE	WEATH.	DEPTH (m)	STRENGTH	SAMPLE REMARKS	TYPE	INTERVAL	DEPTH (m)	TEST TYPE	RESULTS AND REMARKS
04/06/25 No free groundwater observed	82	FILL / Silty CLAY (CL-CL): dark brown; low to medium plasticity; with roots and rootlets, topsoil.		X X X	FILL	NA	w<PL			0.15					0.50	DCP9/150	5 10 15
	0.15	SHALE: pale brown and dark grey/blue; with clay bands. Bringelly Shale.						XW - HW		0.15	VL - L				1.00		Ref 20/120mm
	1	SHALE: brown; with clay bands. Bringelly Shale.						HW		1.30	L - M				1.50		
	1.30	Test Pit discontinued at 1.60m depth. Refusal on medium strength shale.															
	2																
	3																
	4																
	5																
	6																
	7																
	8																
	9																
	10																
	11																
	12																
	13																
	14																
	15																
	16																
	17																
	18																
	19																
	20																
	21																
	22																
	23																
	24																
	25																
	26																
	27																
	28																
	29																
	30																
	31																
	32																
	33																
	34																
	35																
	36																
	37																
	38																
	39																
	40																
	41																
	42																
	43																
	44																
	45																
	46																
	47																
	48																
	49																
	50																
	51																
	52																
	53																
	54																
	55																
	56																
	57																
	58																
	59																
	60																
	61																
	62																
	63																
	64																
	65																
	66																
	67																
	68																
	69																
	70																
	71																
	72																
	73																
	74																
	75																
	76																
	77																
	78																
	79																
	80																
	81																
	82																
	83																
	84																
	85																
	86																
	87																
	88																
	89																
	90																
	91																
	92																
	93																
	94																
	95																
	96																
	97																
	98																
	99																
	100																

TEST PIT LOG

CLIENT: Cameron Brae Pty Ltd

PROJECT: Proposed Residential Subdivision

LOCATION: Stage 1, Birling – 975 The Northern Road, Bringelly

SURFACE LEVEL: 80.9 AHD

COORDINATE: E:290786.0, N:6240231.0

DATUM/GRID: MGA2020 Zone 56

DIP/AZIMUTH: 90°/---

LOCATION ID: 49

PROJECT No: 204684.17

DATE: 04/06/25

SHEET: 1 of 1

ANSWER

NOTES: ^(a)Soil origin is "probable" unless otherwise stated. ^(b)Consistency/Relative density shading is for visual reference only - no correlation between cohesive and granular materials is implied.

PLANT: Hyundai 60CR-9 excavator

OPERATOR: Quake Excavations

LOGGED: AS

METHOD: 450mm toothed bucket

REMARKS:

Refer to explanatory notes for symbol and abbreviation definitions

Appendix D

Laboratory results

Summary table D1

Earthworks Quality Report (204684.09.R.014)

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869A
Client Sample #: 6
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Remarks: The sample was not sufficient to test for shrinks swell test.
Sample Location: 6 (0.5 - 0.6 m)
Material: Fill, silty clay

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Air Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	48		
Plastic Limit (%)	19		
Plasticity Index (%)	29		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	12.5		
Cracking Crumbling Curling	Curling		

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	18.3		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869F
Client Sample #: 8
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 8 (0.5 m)
Material: Fill, silty clay

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Air Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	50		
Plastic Limit (%)	18		
Plasticity Index (%)	32		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	13.5		
Cracking Crumbling Curling	Curling		

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	20.0		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869G
Client Sample #: 13
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 13 (0.5 m)
Material: Fill, silty clay

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Air Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	63		
Plastic Limit (%)	19		
Plasticity Index (%)	44		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	13.5		
Cracking Crumbling Curling	Curling		

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	21.7		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869H
Client Sample #: 17
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 20/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 17 (0.5 m)
Material: Fill, silty clay

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Air Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	50		
Plastic Limit (%)	18		
Plasticity Index (%)	32		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	13.0		
Cracking Crumbling Curling	Curling		

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	18.6		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869I
Client Sample #: 32
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 32 (0.5 m)
Material: Residual, silty clay, pale grey mottled red

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Air Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	65		
Plastic Limit (%)	23		
Plasticity Index (%)	42		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	13.0		
Cracking Crumbling Curling	Curling		

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	18.9		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869J
Client Sample #: 38
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 38 (0.5 m)
Material: Residual, silty clay, pale grey mottled red

Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)		Min	Max
Sample History	Air Dried		
Preparation Method	Dry Sieve		
Liquid Limit (%)	46		
Plastic Limit (%)	18		
Plasticity Index (%)	28		

Linear Shrinkage (AS1289 3.4.1)		Min	Max
Moisture Condition Determined By	AS 1289.3.1.2		
Linear Shrinkage (%)	11.0		
Cracking Crumbling Curling	Curling		

Moisture Content (AS 1289 2.1.1)		Min	Max
Moisture Content (%)	15.2		

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869K
Client Sample #: 6
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 6 (0.5 - 0.6 m)
Material: Fill, silty clay

Douglas Partners Pty Ltd

Macarthur Laboratory

18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A handwritten signature in black ink that appears to read 'Atenabawali'.

Approved Signatory: Nilusha Arachchi

Senior Technician

Laboratory Accreditation Number: 828

Emerson Class Number of a Soil (AS 1289 3.8.1)		Min	Max
Emerson Class	2		
Soil Description	As above		
Nature of Water	Distilled water		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869L
Client Sample #: 12
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 12 (0.5 - 0.76 m)
Material: Residual, silty clay, red brown

Douglas Partners Pty Ltd

Macarthur Laboratory

18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A handwritten signature in black ink that appears to read 'Atenabawali'.

Approved Signatory: Nilusha Arachchi

Senior Technician

Laboratory Accreditation Number: 828

Emerson Class Number of a Soil (AS 1289 3.8.1)		Min	Max
Emerson Class	2		
Soil Description	As above		
Nature of Water	Distilled water		

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869M
Client Sample #: 25
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 25 (0.5 - 0.74 m)
Material: Residual, silty clay, pale grey mottled red

Emerson Class Number of a Soil (AS 1289 3.8.1)		Min	Max
Emerson Class	2		
Soil Description	As above		
Nature of Water	Distilled water		

Douglas Partners Pty Ltd

Macarthur Laboratory

18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A handwritten signature in black ink that appears to read 'Atenabawali'.

Approved Signatory: Nilusha Arachchi

Senior Technician

Laboratory Accreditation Number: 828

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Sample Number: MA-15869N
Client Sample #: 32
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 19/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Preparation Method: AS 1289.1.1 - Sampling and Preparation of Soils
Sample Location: 32 (0.5 m)
Material: Residual, silty clay, pale grey mottled red

Emerson Class Number of a Soil (AS 1289 3.8.1)		Min	Max
Emerson Class	2		
Soil Description	As above		
Nature of Water	Distilled water		

Douglas Partners Pty Ltd
Macarthur Laboratory
18 Waler Crescent Smeaton Grange NSW 2567
Phone: (02) 4647 0075
Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A handwritten signature in black ink that appears to read 'Atenabawali'.

Approved Signatory: Nilusha Arachchi
Senior Technician
Laboratory Accreditation Number: 828

Material Test Report

Report Number: 204684.17-1
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15869
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 10/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Location: 975 The Northern Road, Bringelly

Douglas Partners Pty Ltd
Macarthur Laboratory
18 Waler Crescent Smeaton Grange NSW 2567
Phone: (02) 4647 0075
Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
Senior Technician
Laboratory Accreditation Number: 828

Shrink Swell Index AS 1289 7.1.1 & 2.1.1				
Sample Number	MA-15869B	MA-15869C	MA-15869D	MA-15869E
Date Sampled	02/06/2025	02/06/2025	02/06/2025	02/06/2025
Date Tested	10/06/2025	10/06/2025	10/06/2025	10/06/2025
Material Source	**	**	**	**
Sample Location	7 (0.5 - 0.65 m)	12 (0.5 - 0.76 m)	25 (0.5 - 0.74 m)	36 (0.5 - 0.76 m)
Inert Material Estimate (%)	4	5	0	0
Pocket Penetrometer before (kPa)	510	490	210	600
Pocket Penetrometer after (kPa)	420	220	120	390
Shrinkage Moisture Content (%)	20.7	17.7	14.3	17.7
Shrinkage (%)	3.7	2.4	2.1	3.7
Swell Moisture Content Before (%)	20.4	17.6	14.0	18.1
Swell Moisture Content After (%)	22.4	23.2	23.3	19.2
Swell (%)	0.6	0.5	2.9	2.1
Shrink Swell Index Iss (%)	2.2	1.5	2.0	2.6
Visual Description	Residual, silty clay, orange, brown mottled pale grey	Residual, silty clay, red brown	Residual, silty clay, pale grey mottled red	Residual, silty clay, red brown
Cracking	SC	SC	MC	UC
Crumbling	No	No	No	No
Remarks	**	**	**	**

Shrink Swell Index (Iss) reported as the percentage vertical strain per pF change in suction.

Cracking Terminology: UC Uncracked, SC Slightly Cracked, MC Moderately Cracked, HC Highly Cracked, FR Fragmented.

NATA Accreditation does not cover the performance of pocket penetrometer readings.

Material Test Report

Report Number: 204684.17-2
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15870
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 18/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Location: 975 The Northern Road, Bringelly

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Determination of pH of Soil (In-House) DP MAC1

Sample Number	Location	Depth (m)	Material	pH Value
MA-15870A	1	0.5	Soil	5.3
MA-15870B	2	0.5	Soil	5.1
MA-15870C	2	1.5	Soil	5.1
MA-15870D	2	2.5	Soil	5.4
MA-15870E	3	0.5	Soil	5.1
MA-15870F	4	0.5	Soil	5.7
MA-15870G	5	0.5	Soil	4.7
MA-15870H	5	1.5	Soil	4.7
MA-15870I	5	2.3	Soil	5.1
MA-15870J	6	0.5	Soil	5.6
MA-15870K	7	0.5	Soil	4.9
MA-15870L	8	0.5	Soil	4.6
MA-15870M	8	1.5	Soil	6.4
MA-15870N	8	2.5	Soil	4.7
MA-15870O	9	0.5	Soil	5.3
MA-15870P	10	0.5	Soil	5.2
MA-15870Q	11	0.5	Soil	7.7
MA-15870R	12	0.5	Soil	5.4
MA-15870S	12	1.5	Soil	5.2
MA-15870T	12	2.5	Soil	4.8
MA-15870U	13	0.5	Soil	5.2
MA-15870V	14	0.5	Soil	5.3
MA-15870W	15	0.5	Soil	4.9
MA-15870X	16	0.5	Soil	5.2
MA-15870Y	16	1.5	Soil	4.6
MA-15870Z	16	2.5	Soil	4.5
MA-15870AA	17	0.5	Soil	5.7
MA-15870AB	18	0.5	Soil	5.3
MA-15870AC	19	0.5	Soil	4.6
MA-15870AD	20	0.5	Soil	5.0
MA-15870AE	21	0.5	Soil	4.7

Sample Number	Location	Depth (m)	Material	pH Value
MA-15870AF	22	0.5	Soil	4.8
MA-15870AG	23	0.5	Soil	5.0
MA-15870AH	24	0.5	Soil	4.6
MA-15870AI	24	1.3	Soil	5.3
MA-15870AJ	25	0.5	Soil	4.9
MA-15870AK	26	0.5	Soil	4.8
MA-15870AL	26	1.5	Soil	4.9
MA-15870AM	26	2.5	Soil	5.1
MA-15870AN	27	0.5	Soil	5.1
MA-15870AO	28	0.5	Soil	5.1
MA-15870AP	28	1.5	Soil	4.7
MA-15870AQ	29	0.5	Soil	5.1
MA-15870AR	30	0.5	Soil	4.8
MA-15870AS	31	0.5	Soil	5.0
MA-15870AT	32	0.5	Soil	5.1
MA-15870AU	33	0.5	Soil	6.1
MA-15870AV	34	0.5	Soil	9.5
MA-15870AW	35	0.5	Soil	4.8
MA-15870AX	36	0.5	Soil	5.7
MA-15870AY	36	1.5	Soil	5.1
MA-15870AZ	37	0.5	Soil	5.0
MA-15870BA	38	0.5	Soil	5.0
MA-15870BB	39	0.5	Soil	5.4
MA-15870BC	40	0.5	Soil	7.6
MA-15870BD	41	0.5	Soil	8.8
MA-15870BE	42	0.5	Soil	9.5
MA-15870BF	43	0.3	Soil	8.4
MA-15870BG	44	0.2	Soil	8.8
MA-15870BH	45	0.3	Soil	8.7
MA-15870BI	46	0.5	Soil	7.5
MA-15870BJ	47	0.5	Soil	9.3
MA-15870BK	48	0.5	Soil	7.1
MA-15870BL	48	1.5	Soil	8.1
MA-15870BM	49	0.5	Soil	9.0

Material Test Report

Report Number: 204684.17-2
Issue Number: 1
Date Issued: 20/06/2025
Client: Cameron Brae Pty Ltd
 975 The Northern Road, Bringelly NSW
Contact: Wesley Williams
Project Number: 204684.17
Project Name: Proposed Residential Subdivision
Project Location: 975 The Northern Road, Bringelly NSW
Work Request: 15870
Date Sampled: 02/06/2025
Dates Tested: 10/06/2025 - 18/06/2025
Sampling Method: Sampled by Engineering Department
The results apply to the sample as received
Location: 975 The Northern Road, Bringelly

Douglas Partners Pty Ltd
 Macarthur Laboratory
 18 Waler Crescent Smeaton Grange NSW 2567
 Phone: (02) 4647 0075
 Email: meregal.henakaa@douglaspartners.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Nilusha Arachchi
 Senior Technician
 Laboratory Accreditation Number: 828

Determination of EC of Soil (In-House) DP MAC2

Sample Number	Location	Depth (m)	Material	EC Value (µS/cm)
MA-15870A	1	0.5	Soil	495.30
MA-15870B	2	0.5	Soil	770.60
MA-15870C	2	1.5	Soil	787.50
MA-15870D	2	2.5	Soil	576.60
MA-15870E	3	0.5	Soil	378.40
MA-15870F	4	0.5	Soil	696.70
MA-15870G	5	0.5	Soil	439.30
MA-15870H	5	1.5	Soil	723.60
MA-15870I	5	2.3	Soil	477.40
MA-15870J	6	0.5	Soil	204.40
MA-15870K	7	0.5	Soil	135.30
MA-15870L	8	0.5	Soil	395.70
MA-15870M	8	1.5	Soil	62.20
MA-15870N	8	2.5	Soil	495.50
MA-15870O	9	0.5	Soil	111.30
MA-15870P	10	0.5	Soil	190.20
MA-15870Q	11	0.5	Soil	372.40
MA-15870R	12	0.5	Soil	134.10
MA-15870S	12	1.5	Soil	203.70
MA-15870T	12	2.5	Soil	516.20
MA-15870U	13	0.5	Soil	209.60
MA-15870V	14	0.5	Soil	179.30
MA-15870W	15	0.5	Soil	427.70
MA-15870X	16	0.5	Soil	102.70
MA-15870Y	16	1.5	Soil	383.30
MA-15870Z	16	2.5	Soil	640.40
MA-15870AA	17	0.5	Soil	201.90
MA-15870AB	18	0.5	Soil	203.30
MA-15870AC	19	0.5	Soil	552.80
MA-15870AD	20	0.5	Soil	495.70
MA-15870AE	21	0.5	Soil	624.20

Sample Number	Location	Depth (m)	Material	EC Value (µS/cm)
MA-15870AF	22	0.5	Soil	698.20
MA-15870AG	23	0.5	Soil	479.00
MA-15870AH	24	0.5	Soil	605.80
MA-15870AI	24	1.3	Soil	349.60
MA-15870AJ	25	0.5	Soil	395.20
MA-15870AK	26	0.5	Soil	330.40
MA-15870AL	26	1.5	Soil	541.50
MA-15870AM	26	2.5	Soil	478.40
MA-15870AN	27	0.5	Soil	407.70
MA-15870AO	28	0.5	Soil	184.90
MA-15870AP	28	1.5	Soil	574.50
MA-15870AQ	29	0.5	Soil	637.60
MA-15870AR	30	0.5	Soil	411.70
MA-15870AS	31	0.5	Soil	411.90
MA-15870AT	32	0.5	Soil	536.60
MA-15870AU	33	0.5	Soil	518.90
MA-15870AV	34	0.5	Soil	401.90
MA-15870AW	35	0.5	Soil	802.10
MA-15870AX	36	0.5	Soil	267.90
MA-15870AY	36	1.5	Soil	375.00
MA-15870AZ	37	0.5	Soil	647.60
MA-15870BA	38	0.5	Soil	434.60
MA-15870BB	39	0.5	Soil	316.50
MA-15870BC	40	0.5	Soil	430.30
MA-15870BD	41	0.5	Soil	162.30
MA-15870BE	42	0.5	Soil	311.60
MA-15870BF	43	0.3	Soil	347.20
MA-15870BG	44	0.2	Soil	218.80
MA-15870BH	45	0.3	Soil	201.40
MA-15870BI	46	0.5	Soil	315.80
MA-15870BJ	47	0.5	Soil	578.70
MA-15870BK	48	0.5	Soil	577.40
MA-15870BL	48	1.5	Soil	468.50
MA-15870BM	49	0.5	Soil	377.80

CERTIFICATE OF ANALYSIS 382760

Client Details

Client	Douglas Partners Pty Ltd Smeaton Grange
Attention	Nathan Godina
Address	18 Waler Crescent, Smeaton Grange, NSW, 2567

Sample Details

Your Reference	<u>204684.17 Bringelly</u>
Number of Samples	17 Soil
Date samples received	06/06/2025
Date completed instructions received	06/06/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.
 Samples were analysed as received from the client. Results relate specifically to the samples as received.
 Results are reported on a dry weight basis for solids and on an as received basis for other matrices.
Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by	16/06/2025
Date of Issue	16/06/2025
NATA Accreditation Number 2901. This document shall not be reproduced except in full.	
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor
 Loren Bardwell, Development Chemist

Authorised By

Nancy Zhang, Laboratory Manager

CEC						
Our Reference		382760-1	382760-3	382760-5	382760-9	382760-11
Your Reference	UNITS	2	2	8	12	26
Depth		0.5	2.5	1.5	2.5	1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/06/2025	13/06/2025	13/06/2025	13/06/2025	13/06/2025
Date analysed	-	13/06/2025	13/06/2025	13/06/2025	13/06/2025	13/06/2025
Exchangeable Ca	meq/100g	<0.1	0.1	1.5	<0.1	<0.1
Exchangeable K	meq/100g	0.3	0.5	0.2	<0.1	0.1
Exchangeable Mg	meq/100g	11	12	4.6	1.8	3.1
Exchangeable Na	meq/100g	2.5	3.4	0.3	0.7	1.3
Cation Exchange Capacity	meq/100g	14	16	6.6	2.6	4.5

CEC				
Our Reference		382760-14	382760-15	382760-16
Your Reference	UNITS	36	42	48
Depth		1.5	0.5	0.5
Type of sample		Soil	Soil	Soil
Date prepared	-	13/06/2025	13/06/2025	13/06/2025
Date analysed	-	13/06/2025	13/06/2025	13/06/2025
Exchangeable Ca	meq/100g	0.9	20	2.6
Exchangeable K	meq/100g	0.2	0.1	0.2
Exchangeable Mg	meq/100g	5.9	5.6	5.5
Exchangeable Na	meq/100g	2.1	1.1	2.2
Cation Exchange Capacity	meq/100g	9.1	27	10

Misc Inorg - Soil						
Our Reference		382760-1	382760-2	382760-3	382760-4	382760-5
Your Reference	UNITS	2	2	2	8	8
Depth		0.5	1.5	2.5	0.5	1.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/06/2025	12/06/2025	12/06/2025	12/06/2025	12/06/2025
Date analysed	-	12/06/2025	12/06/2025	12/06/2025	12/06/2025	12/06/2025
Chloride, Cl 1:5 soil:water	mg/kg	470	1,000	410	480	49
Sulphate, SO4 1:5 soil:water	mg/kg	270	350	210	280	50

Misc Inorg - Soil						
Our Reference		382760-6	382760-7	382760-8	382760-9	382760-10
Your Reference	UNITS	8	12	12	12	26
Depth		2.5	0.5	1.5	2.5	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/06/2025	12/06/2025	12/06/2025	12/06/2025	12/06/2025
Date analysed	-	12/06/2025	12/06/2025	12/06/2025	12/06/2025	12/06/2025
Chloride, Cl 1:5 soil:water	mg/kg	450	86	150	450	420
Sulphate, SO4 1:5 soil:water	mg/kg	210	420	160	200	160

Misc Inorg - Soil						
Our Reference		382760-11	382760-12	382760-13	382760-14	382760-15
Your Reference	UNITS	26	26	36	36	42
Depth		1.5	2.5	0.5	1.5	0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/06/2025	12/06/2025	12/06/2025	12/06/2025	12/06/2025
Date analysed	-	12/06/2025	12/06/2025	12/06/2025	12/06/2025	12/06/2025
Chloride, Cl 1:5 soil:water	mg/kg	710	620	250	390	140
Sulphate, SO4 1:5 soil:water	mg/kg	140	210	240	150	37

Misc Inorg - Soil			
Our Reference		382760-16	382760-17
Your Reference	UNITS	48	48
Depth		0.5	1.5
Type of sample		Soil	Soil
Date prepared	-	12/06/2025	12/06/2025
Date analysed	-	12/06/2025	12/06/2025
Chloride, Cl 1:5 soil:water	mg/kg	390	530
Sulphate, SO4 1:5 soil:water	mg/kg	210	120

Method ID	Methodology Summary
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.

Test Description	Units	QUALITY CONTROL: CEC			Blank	#	Base	Dup.	Duplicate		Spike Recovery %	
		PQL	Method	RPD					LCS-1	382760-9		
Date prepared	-				13/06/2025	5	13/06/2025	13/06/2025		13/06/2025	13/06/2025	
Date analysed	-				13/06/2025	5	13/06/2025	13/06/2025		13/06/2025	13/06/2025	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	5	1.5	1.2	22	97	99		
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	5	0.2	0.1	67	99	93		
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	5	4.6	3.8	19	95	97		
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	5	0.3	0.3	0	87	84		

QUALITY CONTROL: Misc Inorg - Soil							Duplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	382760-2
Date prepared	-			12/06/2025	1	12/06/2025	12/06/2025		12/06/2025	12/06/2025
Date analysed	-			12/06/2025	1	12/06/2025	12/06/2025		12/06/2025	12/06/2025
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	470	500	6	92	#
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	1	270	300	11	91	##

QUALITY CONTROL: Misc Inorg - Soil							Duplicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	12	12/06/2025	12/06/2025		[NT]	[NT]
Date analysed	-			[NT]	12	12/06/2025	12/06/2025		[NT]	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	12	620	680	9	[NT]	[NT]
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	[NT]	12	210	220	5	[NT]	[NT]

Result Definitions

NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions

Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Air volumes are typically provided by customers (often as flow rate(s) and sampling time(s) and/or simply volumes) sampled or exposure times (determines 'volume' passive badges are exposed to)). Hence in such circumstances the volume measurement is inevitably not covered by Envirolab's NATA accreditation. An exception may occur where Envirolab Newcastle does the sampling where accreditation exists for certain types of sampling and hence volume determination(s). Note air volumes are often used to determine concentrations for dust and/or analyses on filters, sorbents and in impingers. For canister sampling, the air volume is covered by Envirolab's NATA accreditation.

Urine Analysis - The BEI values listed are taken from the 2022 edition of "TLVs and BEIs Threshold Limits" by ACGIH.

Report Comments

MISC_INORG_DRY: # Percent recovery is not applicable due to the high concentration of the analyte/s in the sample/s. However an acceptable recovery was obtained for the LCS.

MISC_INORG_DRY: ## Percent recovery not reported due to matrix interferences. However, an acceptable recovery was obtained for the LCS.

Table D1: Summary Table - Laboratory Tests and Assessments

Test Location	Sample Depth	pH	Chloride Concentration	Sulphate Concentration	Resistivity	Soil Condition	Sample Aggressivity Class				Exchangeable Sodium (Na) Concentration	Cation Exchange Capacity	Sodicity [Na/CEC]	Sodicity Class	Emerson Class Number	Dispersion? (from Emerson Class)	Soil Texture Group	Textural Factor (M)	EC _{1:5}	EC _e	Sample Salinity Class		
	(m bgl)	(pH units)	(mg/kg)	(mg/kg)	Ω cm	[AS2159-2009]	[AS2159-2009]														[Richards 1954]		
							By inversion of EC1:5	Aggr. to Concrete - from sample pH	Aggr. to Concrete - from Sulphate conc.	Aggr. to Steel - from sample pH	Aggr. to Steel - from Chloride conc.	Aggr. to Steel - from sample Resistivity											
1	0.5	5.3			2019	B	Mild		Non-Aggressive		Non-Aggressive								Heavy clay	6	495.3	3.0	Slightly Saline
2	0.5	5.1	470	270	1298	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Mild	2.5	14	18	Highly Sodic			Medium clay	7	770.6	5.4	Moderately Saline	
2	1.5	5.1	1000	350	1270	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Mild							Heavy clay	6	787.5	4.7	Moderately Saline	
2	2.5	5.4	410	210	1734	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Mild	3.4	16	21	Highly Sodic			Medium clay	7	576.6	4.0	Moderately Saline	
3	0.5	5.1			2643	B	Mild		Non-Aggressive		Non-Aggressive							Heavy clay	6	378.4	2.3	Slightly Saline	
4	0.5	5.7			1435	B	Non-Aggressive		Non-Aggressive		Mild							Heavy clay	6	696.7	4.2	Moderately Saline	
5	0.5	4.7			2276	B	Mild		Non-Aggressive		Non-Aggressive							Heavy clay	6	439.3	2.6	Slightly Saline	
5	1.5	4.7			1382	B	Mild		Non-Aggressive		Mild							Heavy clay	6	723.6	4.3	Moderately Saline	
5	2.3	5.1			2095	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	477.4	3.3	Slightly Saline	
6	0.5	5.6			4892	B	Non-Aggressive		Non-Aggressive		Non-Aggressive					2	Some	Medium clay	7	204.4	1.4	Non-Saline	
7	0.5	4.9			7391	B	Mild		Non-Aggressive		Non-Aggressive							Light medium clay	8	135.3	1.1	Non-Saline	
8	0.5	4.6	480	280	2527	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive							Heavy clay	6	395.7	2.4	Slightly Saline	
8	1.5	6.4	49	50	16077	B	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive	0.3	7	5	Non-Sodic			Medium clay	7	62.2	0.4	Non-Saline	
8	2.5	4.7	450	210	2018	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive							Medium clay	7	495.5	3.5	Slightly Saline	
9	0.5	5.3			8985	B	Mild		Non-Aggressive		Non-Aggressive							Light medium clay	8	111.3	0.9	Non-Saline	
10	0.5	5.2			5258	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	190.2	1.3	Non-Saline	
11	0.5	7.7			2685	B	Non-Aggressive		Non-Aggressive		Non-Aggressive							Medium clay	7	372.4	2.6	Slightly Saline	
12	0.5	5.4	86	420	7457	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive				2	Some	Medium clay	7	134.1	0.9	Non-Saline		
12	1.5	5.2	150	160	4909	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive							Heavy clay	6	203.7	1.2	Non-Saline	
12	2.5	4.8	450	200	1937	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Mild	0.7	3	27	Highly Sodic			Heavy clay	6	516.2	3.1	Slightly Saline	
13	0.5	5.2			4771	B	Mild		Non-Aggressive		Non-Aggressive							Heavy clay	6	209.6	1.3	Non-Saline	
14	0.5	5.3			5577	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	179.3	1.3	Non-Saline	
15	0.5	4.9			2338	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	427.7	3.0	Slightly Saline	
16	0.5	5.2			9737	B	Mild		Non-Aggressive		Non-Aggressive							Light medium clay	8	102.7	0.8	Non-Saline	
16	1.5	4.6			2609	B	Mild		Non-Aggressive		Non-Aggressive							Heavy clay	6	383.3	2.3	Slightly Saline	
16	2.5	4.5			1562	B	Moderate		Non-Aggressive		Non-Aggressive	Mild						Heavy clay	6	640.4	3.8	Slightly Saline	
17	0.5	5.7			4953	B	Non-Aggressive		Non-Aggressive		Non-Aggressive							Medium clay	7	201.9	1.4	Non-Saline	
18	0.5	5.3			4919	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	203.3	1.4	Non-Saline	
19	0.5	4.6			1809	B	Mild		Non-Aggressive	Mild								Medium clay	7	552.8	3.9	Slightly Saline	
20	0.5	5			2017	B	Mild		Non-Aggressive		Non-Aggressive							Heavy clay	6	495.7	3.0	Slightly Saline	
21	0.5	4.7			1602	B	Mild		Non-Aggressive	Mild								Heavy clay	6	624.2	3.7	Slightly Saline	
22	0.5	4.8			1432	B	Mild		Non-Aggressive	Mild								Heavy clay	6	698.2	4.2	Moderately Saline	
23	0.5	5			2088	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	479	3.4	Slightly Saline	
24	0.5	4.6			1651	B	Mild		Non-Aggressive	Mild								Medium clay	7	605.8	4.2	Moderately Saline	
24	1.3	5.3			2860	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	349.6	2.4	Slightly Saline	
25	0.5	4.9			2530	B	Mild		Non-Aggressive		Non-Aggressive				2	Some	Medium clay	7	395.2	2.8	Slightly Saline		
26	0.5	4.8	420	160	3027	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive							Medium clay	7	330.4	2.3	Slightly Saline	
26	1.5	4.9	710	140	1847	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Mild	1.3	5	29	Highly Sodic			Heavy clay	6	541.5	3.2	Slightly Saline	
26	2.5	5.1	620	210	2090	B	Mild	Non-Aggressive	Non-Aggressive	Non-Aggressive	Non-Aggressive							Heavy clay	6	478.4	2.9	Slightly Saline	
27	0.5	5.1			2453	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	407.7	2.9	Slightly Saline	
28	0.5	5.1			5408	B	Mild		Non-Aggressive		Non-Aggressive							Medium clay	7	184.9	1.3	Non-Saline	
28	1.5	4.7	</																				

Cameron Brae Pty Ltd
c-/ Orion Group
975 The Northern Road
Bringelly, NSW 2556

Project 204684.09
9 October 2025
R.014.Rev2
TB

Attention: James Dunbar
Email: jdunbar@cambrae.com.au

Report on Level 1 Inspections and Testing of Filling Proposed Mixed-Use Subdivision Stage 1, 975 The Northern Road, Bringelly NSW

1. Introduction

This report presents a summary of the inspections and testing of the bulk fill carried out between 29 April 2024 to 2 September 2025 (the period) at the proposed mixed-use subdivision at Stage 1, 975 The Northern Road, Bringelly NSW. The scope of work provided by Douglas Partners Pty Ltd (Douglas) was in general accordance with the requirements for Level 1 inspections and testing as defined in AS3798:2007 "Guidelines on Earthworks for Commercial and Residential Developments" for the bulk fill placed.

2. Strip inspections

The stripped areas were inspected and test rolled by Douglas engineers or senior soils technicians prior to the placement of fill from 30 April 2024. The stripped surface generally comprised stiff natural clay or bedrock. The subgrade areas were stripped to what was considered appropriate to support the placement of controlled fill.

3. Placement and testing of filling

The specification for the bulk fill was for compaction between 98% - 104% relative to Standard Maximum Dry Density (SMDD), with moisture contents to be maintained within 2% of Standard Optimum.

The bulk fill was placed by TRN Group (TRN) during the period. Based on the plan (attached) provided by TRN, some 84 924 m³ of fill was placed by TRN during the period 30 April 2024 to 2 September 2025. The fill was placed continuously under compaction plant and was tested in lifts of up to 300 mm thickness. The fill materials typically comprised both site-won and imported clays shale and sandstone. When informed by TRN that controlled fill was to be placed, a soils technician was present on site full-time during the fill placement to undertake field testing and make site observations.

A total of 276 conforming density tests (including retests) were carried out in the fill during the period. Based on the survey volume provided and a testing frequency of one test per 500 m³, a minimum of 168 density tests were required for the period. The testing frequency for the period (giving 276 conforming tests) is therefore assessed to be in accordance with the project requirements. The locations of tests were randomly selected by Douglas to achieve distribution throughout the fill volume and are shown on Drawing 1 which is attached. The results of the density tests are given on the attached Project Summary Report and are summarised in Table 1.

Table 1: Summary of density testing

	Density ratio	Moisture content variance
Specification	98% – 104%	-2.0% (wet) to +2.0% (dry)
Range (passed tests)	98% – 103.5%	-1.5% (wet) to +2.0% (dry)
Mean (passed tests)	100.5%	+0.4% (dry)
Median (passed tests)	100.5%	+0.5% (dry)
Standard deviation (passed tests)	1.4%	0.9%
No. passed tests (inc. retests)	276	
No. of retests	8	

Notes: Statistics provided are rounded to the nearest 0.1%.

4. Comments

Douglas undertook inspection and earthworks testing of fill placed within Stage 1, 975 The Northern Road, Bringelly NSW, as requested by TRN. It is considered that the placement and compaction of the bulk fill by TRN in the areas strip inspected and viewed by Douglas during the period have been carried out in accordance with the project specification as far as Douglas has been able to determine (as per AS 3798 requirements). Douglas does not undertake to guarantee the work of the contractor nor relieve their responsibility to produce a completed product conforming to the requirements of the specification.

For building on the filled areas, consideration should be given by the user/designer to the following:

- Possible disruption of the compacted fill by installation of services.
- The possibility that additional fill (even stockpiles which were eventually removed) has been placed after the date of the last field density test.
- Adequate containment of the filled area.
- The suitability of the filled land to support structures of various types without excessive deflection. In particular, the shrink/swell properties of the fill and natural soils must be considered in foundation/footing slab design and in detailing structures.
- The possible softening of the compacted fill because of rainfall and/or inundation from other sources. The moisture content (thus strength) of the placed fill could vary considerably from the time of placement to the time of construction.
- Variation in fill depth.

We trust that the above information is in accordance with your present needs. Please do not hesitate to contact the undersigned should you require additional information at this stage.

5. References

AS 3798. (2007). *Guidelines on Earthworks for Commercial and Residential Developments*. Standards Australia.

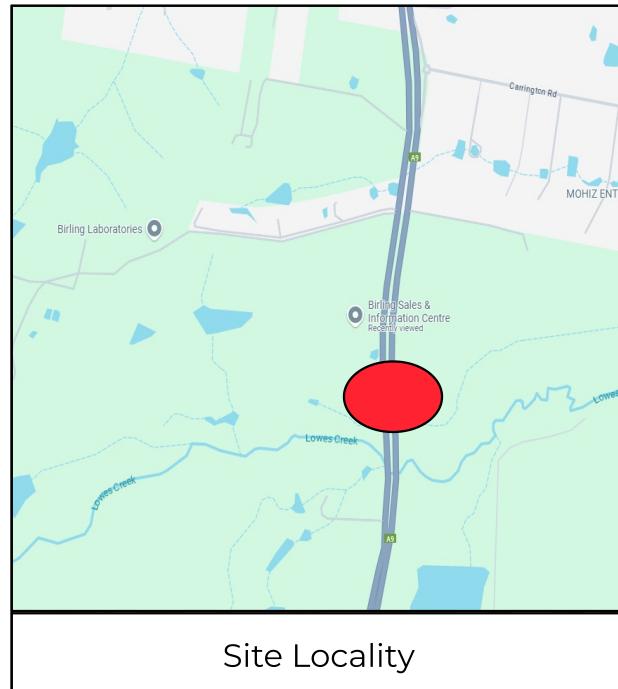
Please contact the undersigned if you have any questions on this matter.

Yours faithfully

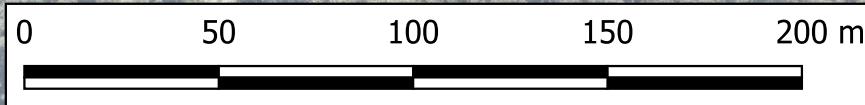
Douglas Partners Pty Ltd

Thomas Bush

Geotechnical Engineer


Reviewed by

Konrad Schultz


Principal

Attachments:

- Drawing 1 – Density test location plan
- Project summary report
- Staging S1 earthworks plan (provided by TRN Group)
- About this inspection report

Site Locality

Project Summary Report

Douglas Partners Pty Ltd

Macarthur Laboratory

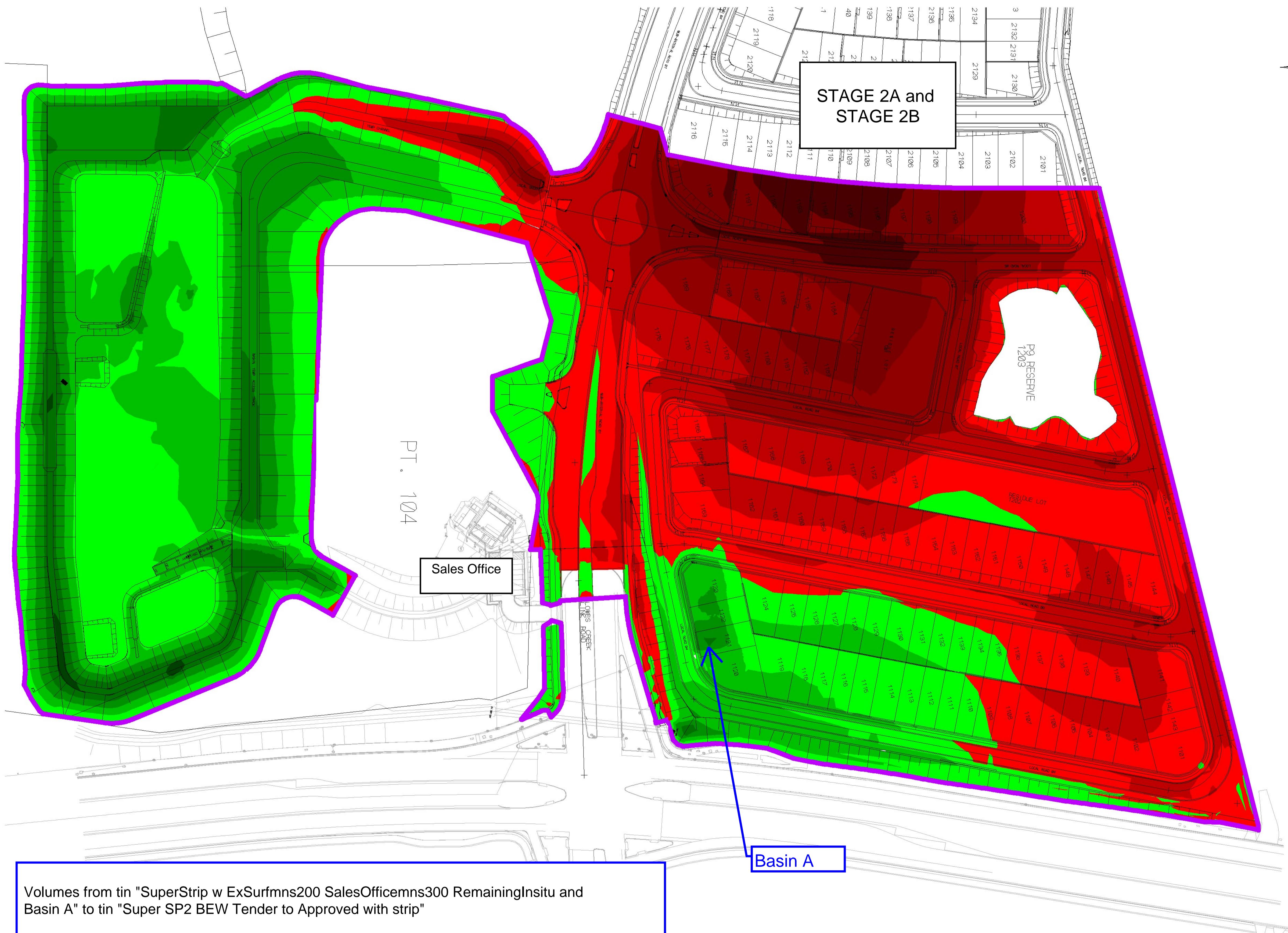
18 Waler Crescent Smeaton Grange NSW 2567

Phone: (02) 4647 0075

Report date: 15/09/2025
Client: Cameron Brae Pty Ltd
Contact: James Dunbar
Project number: 204684.09
Project name: Proposed residential subdivision
Project location: Stages 1 and 2, Birling - 975 The Northern Road, Bringelly NSW
Specification: 98 - 104% SMDD and -2.0% (wet) to 2.0% (dry) of SOMC
Test methods: AS 1289 5.7.1 STD & 5.8.1

Test #	Date	Easting	Northing	Elevation (m)	Relative compaction (%)	Moisture variation (%)	Pass/fail	Comment
6	30/04/2024	290956	6240160	73.4	102.5	-0.5	Pass	
7	30/04/2024	290942	6240157	73.8	103.0	-0.5	Pass	
8	30/04/2024	290992	6240182	73.0	99.0	0.5	Pass	
9	30/04/2024	290987	6240189	73.3	98.5	-0.5	Pass	
10	1/05/2024	290958	6240214	74.2	101.5	-1.0	Pass	
11	1/05/2024	290952	6240229	74.4	99.0	-0.5	Pass	
12	1/05/2024	290977	6240207	73.9	100.5	-0.5	Pass	
13	1/05/2024	290941	6240215	74.6	99.5	-0.5	Pass	
14	2/05/2024	290967	6240196	74.4	99.5	-0.5	Pass	
15	2/05/2024	290951	6240224	75.0	101.5	-1.0	Pass	
16	2/05/2024	290993	6240261	73.9	101.0	-0.5	Pass	
17	2/05/2024	290969	6240260	74.3	98.0	-0.5	Pass	
18	3/05/2024	290952	6240281	75.6	101.5	-0.5	Pass	
19	3/05/2024	290979	6240276	74.9	100.5	-0.5	Pass	
20	3/05/2024	290979	6240306	75.6	101.5	-0.5	Pass	
21	3/05/2024	290962	6240313	76.0	102.0	-0.5	Pass	
196	19/06/2024	290978	6240176	72.9	101.0	1.5	Pass	
361	31/07/2024	290960	6240244	75.1	99.0	0.5	Pass	
362	31/07/2024	290970	6240241	74.4	99.0	0.5	Pass	
363	31/07/2024	290978	6240242	74.5	99.0	0.5	Pass	
566	31/08/2024	290719	6240036	75.0	98.5	-0.5	Pass	
569	2/09/2024	290721	6240035	75.0	103.0	0.5	Pass	
570	2/09/2024	290706	6240005	74.3	98.5	0.5	Pass	
571	3/09/2024	290694	6239962	71.6	98.5	-0.5	Pass	
575	4/09/2024	290702	6239959	71.3	99.5	0.5	Pass	
576	4/09/2024	290690	6239951	71.2	99.0	0.5	Pass	
580	5/09/2024	290685	6239966	72.0	99.0	0.5	Pass	
581	5/09/2024	290696	6239950	71.6	99.0	1.0	Pass	
582	6/09/2024	290685	6239968	72.2	102.0	1.0	Pass	
583	6/09/2024	290696	6239943	71.9	100.0	1.0	Pass	
588	7/09/2024	290697	6239963	72.7	101.5	0.5	Pass	
589	9/09/2024	290708	6239961	72.5	102.5	0.5	Pass	
590	9/09/2024	290705	6239952	72.3	103.0	0.5	Pass	
598	10/09/2024	290697	6239963	72.9	101.0	-0.5	Pass	
716	31/10/2024	290858	6240094	75.0	103.5	1.0	Pass	
717	31/10/2024	290822	6240092	75.3	103.0	0.5	Pass	
718	31/10/2024	290804	6240096	76.0	103.5	1.0	Pass	
727	5/11/2024	290722	6239993	72.9	100.5	-0.5	Pass	
728	5/11/2024	290722	6240008	73.7	100.0	0.0	Pass	
729	5/11/2024	290732	6240031	74.3	99.0	0.0	Pass	
755	4/12/2024	290941	6239937	69.0	102.5	1.5	Pass	
756	4/12/2024	290930	6239931	68.9	101.5	1.5	Pass	
757	4/12/2024	290923	6239945	69.0	99.5	1.5	Pass	
758	5/12/2024	290963	6239903	68.7	103.0	1.0	Pass	
759	5/12/2024	290947	6239901	69.2	100.0	1.0	Pass	
760	5/12/2024	290937	6239898	69.2	99.5	1.0	Pass	
761	5/12/2024	290932	6239919	69.6	101.0	1.0	Pass	
762	5/12/2024	290958	6239893	68.8	101.0	2.0	Pass	
763	6/12/2024	290955	6239862	68.3	102.0	2.0	Pass	

Test #	Date	Easting	Northing	Elevation (m)	Relative compaction (%)	Moisture variation (%)	Pass/fail	Comment
764	6/12/2024	290950	6239874	68.7	99.0	2.0	Pass	
765	6/12/2024	290936	6239866	68.6	102.0	2.0	Pass	
766	6/12/2024	290990	6239868	68.3	101.0	2.0	Pass	
767	9/12/2024	290932	6239948	69.4	103.0	1.0	Pass	
768	9/12/2024	290922	6239940	69.5	101.0	0.5	Pass	
769	9/12/2024	290914	6239945	69.5	101.0	1.0	Pass	
770	10/12/2024	290920	6239909	69.4	95.5	1.0	Fail	Retest #773
771	10/12/2024	290927	6239893	69.4	104.5	1.5	Fail	Retest #783
772	10/12/2024	290949	6239874	69.1	107.0	1.0	Fail	Retest #782
773	10/12/2024	290920	6239909	69.4	103.0	1.5	Pass	
774	11/12/2024	290990	6239877	68.5	97.5	0.0	Fail	Retest #787
775	11/12/2024	290968	6239915	69.2	100.0	0.5	Pass	
777	11/12/2024	290990	6239877	68.5	102.0	2.0	Pass	
778	12/12/2024	290971	6239900	69.6	103.5	-0.5	Pass	
779	12/12/2024	290970	6239861	68.7	103.0	1.0	Pass	
780	12/12/2024	290944	6239855	68.9	102.5	1.5	Pass	
781	12/12/2024	290976	6239876	69.3	102.0	2.0	Pass	
782	12/12/2024	290927	6239893	69.4	102.5	-0.5	Pass	
783	12/12/2024	290949	6239874	69.1	101.5	2.0	Pass	
784	13/12/2024	290973	6239903	69.7	106.5	2.0	Fail	Retest #787
785	13/12/2024	290977	6239893	69.9	103.5	2.0	Pass	
786	13/12/2024	290953	6239933	70.0	101.5	2.0	Pass	
787	13/12/2024	290972	6239904	69.7	102.0	2.0	Pass	
788	16/12/2024	290953	6239940	70.6	101.5	2.0	Pass	
789	16/12/2024	290966	6239918	70.6	99.5	1.5	Pass	
790	16/12/2024	290977	6239889	70.2	99.0	1.5	Pass	
791	17/12/2024	290977	6239840	68.4	100.5	0.5	Pass	
792	17/12/2024	290983	6239841	68.3	101.0	1.0	Pass	
793	17/12/2024	290987	6239846	68.6	100.5	0.0	Pass	
794	17/12/2024	290986	6239850	69.2	101.5	1.0	Pass	
795	18/12/2024	290953	6239933	70.1	98.5	0.5	Pass	
796	18/12/2024	290952	6239857	69.6	101.0	-0.5	Pass	
797	18/12/2024	290967	6239851	69.8	103.0	0.5	Pass	
798	18/12/2024	290943	6239843	69.6	101.0	0.0	Pass	
799	19/12/2024	290947	6239853	70.1	100.0	1.0	Pass	
800	19/12/2024	290927	6239946	70.8	99.5	0.5	Pass	
801	19/12/2024	290952	6239938	70.9	99.5	-0.5	Pass	
802	20/12/2024	290922	6239950	71.3	100.0	0.5	Pass	
803	6/01/2025	290957	6239849	70.6	100.0	1.5	Pass	
804	6/01/2025	290982	6239866	71.2	103.0	2.0	Pass	
805	6/01/2025	290981	6239889	71.4	99.5	1.0	Pass	
806	13/01/2025	290975	6239904	72.1	101.5	1.0	Pass	
807	13/01/2025	290962	6239853	72.1	100.5	0.5	Pass	
808	13/01/2025	290952	6239940	72.0	100.5	0.5	Pass	
809	14/01/2025	290890	6239922	69.1	102.0	1.0	Pass	
810	14/01/2025	290908	6239923	69.3	102.0	1.0	Pass	
811	14/01/2025	290907	6239908	69.4	101.5	1.5	Pass	
812	14/01/2025	290892	6239908	69.1	100.5	2.0	Pass	
813	21/01/2025	290867	6239900	69.3	102.0	0.5	Pass	
814	21/01/2025	290885	6239891	69.3	100.0	1.5	Pass	
815	21/01/2025	290891	6239869	69.0	101.5	2.0	Pass	
816	22/01/2025	290835	6239883	68.5	100.0	0.5	Pass	
817	22/01/2025	290837	6239890	69.0	100.5	0.0	Pass	
818	22/01/2025	290834	6239888	69.2	101.5	0.0	Pass	
819	23/01/2025	291023	6240275	73.6	101.5	0.5	Pass	
820	23/01/2025	291028	6240333	75.4	99.0	1.0	Pass	
821	23/01/2025	290855	6239915	69.5	98.5	0.5	Pass	
822	23/01/2025	290864	6239909	69.8	100.0	-1.0	Pass	
823	23/01/2025	290870	6239889	69.5	99.5	-0.5	Pass	
824	23/01/2025	290858	6239884	69.4	99.0	0.5	Pass	
825	23/01/2025	290855	6239911	69.8	99.5	0.5	Pass	


Test #	Date	Easting	Northing	Elevation (m)	Relative compaction (%)	Moisture variation (%)	Pass/fail	Comment
826	24/01/2025	291003	6240213	72.9	101.0	-0.5	Pass	
827	24/01/2025	290865	6239888	69.5	100.0	-0.5	Pass	
828	24/01/2025	290872	6239897	69.5	99.5	-0.5	Pass	
829	24/01/2025	290881	6239878	69.3	99.5	0.5	Pass	
830	24/01/2025	290890	6239882	69.6	99.0	1.0	Pass	
831	24/01/2025	290897	6239881	69.8	99.5	2.0	Pass	
832	24/01/2025	290848	6239901	70.0	99.5	1.5	Pass	
833	29/01/2025	290837	6239851	69.5	100.5	-0.5	Pass	
834	29/01/2025	290849	6239850	69.5	99.5	0.5	Pass	
835	29/01/2025	290875	6239849	69.1	102.0	0.5	Pass	
836	29/01/2025	290869	6239843	68.8	99.5	-0.5	Pass	
837	29/01/2025	290902	6239852	69.4	98.0	-0.5	Pass	
838	29/01/2025	290845	6239845	69.2	99.5	0.5	Pass	
839	30/01/2025	290822	6239845	69.8	100.5	1.0	Pass	
840	30/01/2025	290836	6239849	69.9	99.0	0.5	Pass	
841	30/01/2025	290856	6239843	69.6	102.0	-0.5	Pass	
842	30/01/2025	290889	6239847	69.6	100.0	-0.5	Pass	
843	30/01/2025	290863	6239852	69.9	98.5	-0.5	Pass	
844	30/01/2025	290863	6239857	69.9	101.0	1.0	Pass	
845	31/01/2025	290878	6239848	70.4	98.5	-0.5	Pass	
846	31/01/2025	290887	6239853	70.2	99.5	0.5	Pass	
847	31/01/2025	290858	6239852	70.5	99.5	0.5	Pass	
848	31/01/2025	290831	6239846	70.3	101.0	0.5	Pass	
849	31/01/2025	290848	6239847	70.4	99.5	-0.5	Pass	
850	31/01/2025	290868	6239850	70.3	100.5	-1.0	Pass	
851	3/02/2025	290862	6239849	70.6	100.0	1.0	Pass	
852	3/02/2025	290878	6239849	70.5	100.0	-1.0	Pass	
853	3/02/2025	290883	6239846	70.7	102.0	-0.5	Pass	
854	3/02/2025	290847	6239847	71.0	99.0	-0.5	Pass	
855	3/02/2025	290823	6239851	71.1	99.0	1.0	Pass	
856	3/02/2025	290855	6239850	71.2	103.0	-0.5	Pass	
857	3/02/2025	290871	6239850	71.1	101.0	-1.0	Pass	
858	4/02/2025	290761	6239847	69.6	100.5	1.0	Pass	
859	4/02/2025	290736	6239851	69.6	101.5	1.5	Pass	
860	4/02/2025	290782	6239852	69.9	99.0	-0.5	Pass	
861	4/02/2025	290796	6239847	70.9	98.5	-0.5	Pass	
862	4/02/2025	290845	6239850	71.5	98.0	-1.0	Pass	
863	4/02/2025	290827	6239846	71.3	99.5	-0.5	Pass	
864	4/02/2025	290877	6239850	71.2	98.5	-0.5	Pass	
865	4/02/2025	290775	6239854	69.3	98.5	-0.5	Pass	
866	5/02/2025	290806	6239847	71.5	99.0	-1.0	Pass	
867	5/02/2025	290790	6239851	71.5	99.0	-0.5	Pass	
868	5/02/2025	290762	6239849	71.2	99.0	1.5	Pass	
869	5/02/2025	290781	6239848	71.5	99.0	1.0	Pass	
870	5/02/2025	291004	6240177	71.5	100.0	0.5	Pass	
871	5/02/2025	291006	6240185	72.0	100.5	-0.5	Pass	
872	5/02/2025	290757	6239847	71.0	102.0	-1.0	Pass	
873	5/02/2025	290772	6239848	71.3	98.0	-0.5	Pass	
874	6/02/2025	290779	6239866	69.3	100.0	-1.0	Pass	
875	6/02/2025	290790	6239882	68.8	98.0	1.0	Pass	
876	6/02/2025	290794	6239894	69.2	100.0	2.0	Pass	
877	6/02/2025	290815	6239907	69.2	98.5	1.5	Pass	
878	6/02/2025	290788	6239929	69.5	99.5	2.0	Pass	
879	6/02/2025	290780	6239908	69.1	99.5	0.0	Pass	
880	6/02/2025	290809	6239875	69.0	99.5	0.5	Pass	
881	7/02/2025	290798	6239895	69.8	98.5	1.5	Pass	
882	7/02/2025	290807	6239880	69.8	102.5	2.0	Pass	
883	7/02/2025	290794	6239885	69.8	100.5	1.5	Pass	
884	7/02/2025	290767	6239874	69.8	103.0	1.5	Pass	
885	7/02/2025	290773	6239902	69.6	99.5	0.5	Pass	
886	7/02/2025	291004	6240173	72.6	103.0	2.5	Fail	Retest #915

Test #	Date	Easting	Northing	Elevation (m)	Relative compaction (%)	Moisture variation (%)	Pass/fail	Comment
887	7/02/2025	291004	6240169	71.7	102.5	1.5	Pass	
888	13/02/2025	290696	6239911	70.7	102.0	0.0	Pass	
889	13/02/2025	290692	6239910	70.5	100.5	-1.0	Pass	
890	13/02/2025	290695	6239894	70.8	99.5	0.5	Pass	
891	13/02/2025	290705	6239908	70.7	100.0	-1.0	Pass	
892	13/02/2025	290704	6239890	71.0	99.5	-0.5	Pass	
893	13/02/2025	290717	6239880	70.5	99.0	-0.5	Pass	
894	13/02/2025	290697	6239882	71.1	99.5	0.5	Pass	
895	14/02/2025	290716	6239851	70.7	99.5	0.5	Pass	
896	14/02/2025	290713	6239845	71.1	98.5	0.5	Pass	
897	14/02/2025	290702	6239855	71.0	100.0	-1.0	Pass	
898	14/02/2025	290719	6239880	71.2	102.0	-0.5	Pass	
899	14/02/2025	290705	6239886	71.2	101.0	0.5	Pass	
900	14/02/2025	290732	6239856	70.7	101.5	0.5	Pass	
901	14/02/2025	290742	6239852	70.9	103.0	0.5	Pass	
902	17/02/2025	290717	6239888	71.8	99.5	0.5	Pass	
903	17/02/2025	290706	6239905	71.8	103.0	1.0	Pass	
904	17/02/2025	290697	6239894	71.2	98.0	-1.0	Pass	
905	17/02/2025	290700	6239882	71.4	98.0	-1.5	Pass	
906	17/02/2025	290708	6239870	71.7	99.5	-0.5	Pass	
907	17/02/2025	290716	6239866	71.7	100.5	-0.5	Pass	
908	17/02/2025	290707	6239859	71.7	99.5	0.5	Pass	
909	18/02/2025	290721	6239894	72.0	101.5	-0.5	Pass	
910	18/02/2025	290711	6239871	72.0	100.0	-0.5	Pass	
911	18/02/2025	290700	6239894	72.0	102.0	-0.5	Pass	
912	18/02/2025	290741	6239916	70.4	99.0	1.0	Pass	
913	18/02/2025	290759	6239901	70.1	101.5	1.5	Pass	
914	18/02/2025	290772	6239919	70.3	100.5	1.0	Pass	
915	18/02/2025	291004	6240173	72.5	101.0	1.5	Pass	
916	19/02/2025	290705	6239922	72.0	99.0	-0.5	Pass	
917	19/02/2025	290702	6239916	72.5	100.5	-0.5	Pass	
918	19/02/2025	290708	6239908	72.7	102.5	0.5	Pass	
919	19/02/2025	290701	6239899	72.7	102.0	1.0	Pass	
920	20/02/2025	290776	6239937	70.4	99.0	0.5	Pass	
921	20/02/2025	290788	6239892	70.4	99.5	1.0	Pass	
922	20/02/2025	290710	6239903	72.6	103.0	0.5	Pass	
923	21/02/2025	290947	6240165	73.3	99.5	1.5	Pass	
924	21/02/2025	290957	6240168	73.2	102.5	0.5	Pass	
925	21/02/2025	290939	6240165	74.1	101.0	0.5	Pass	
926	27/02/2025	290732	6240040	74.4	99.5	-0.5	Pass	
927	27/02/2025	290727	6240034	74.7	99.0	-1.0	Pass	
928	27/02/2025	290720	6240004	73.9	99.5	-0.5	Pass	
929	27/02/2025	290726	6240013	73.8	99.5	0.5	Pass	
930	27/02/2025	290727	6240019	74.2	103.5	0.5	Pass	
931	28/02/2025	290795	6239946	70.3	100.5	0.5	Pass	
932	28/02/2025	290767	6239949	70.6	103.0	0.5	Pass	
933	28/02/2025	290755	6239955	70.9	101.0	0.5	Pass	
934	28/02/2025	290840	6239948	69.1	101.0	0.5	Pass	
935	28/02/2025	290856	6239944	69.9	103.0	0.5	Pass	
936	1/03/2025	290879	6239945	69.5	102.5	0.5	Pass	
937	1/03/2025	290830	6239952	70.3	100.5	0.5	Pass	
938	1/03/2025	290773	6239955	71.0	103.0	0.5	Pass	
939	3/03/2025	290853	6239944	70.0	99.5	-0.5	Pass	
940	3/03/2025	290867	6239940	69.8	102.5	2.0	Pass	
941	3/03/2025	290846	6239946	70.3	102.5	-0.5	Pass	
942	3/03/2025	290826	6239941	70.5	99.5	1.0	Pass	
943	3/03/2025	290794	6239952	71.0	99.5	1.0	Pass	
944	6/03/2025	290944	6240175	71.8	100.0	1.0	Pass	
945	6/03/2025	290851	6239964	70.4	99.5	-1.0	Pass	
946	6/03/2025	290831	6239957	70.6	102.0	-0.5	Pass	
947	6/03/2025	290817	6239962	70.8	101.5	-1.0	Pass	

Test #	Date	Easting	Northing	Elevation (m)	Relative compaction (%)	Moisture variation (%)	Pass/fail	Comment
948	10/03/2025	290938	6240176	72.9	101.0	0.0	Pass	
949	10/03/2025	290956	6240184	72.0	98.5	-1.0	Pass	
950	10/03/2025	290863	6239955	70.6	99.0	-1.0	Pass	
951	10/03/2025	290856	6239948	71.2	100.5	0.5	Pass	
952	10/03/2025	290837	6239954	71.2	103.0	0.5	Pass	
953	10/03/2025	290789	6239955	71.6	98.5	-1.0	Pass	
954	10/03/2025	290824	6239947	71.6	98.5	-1.0	Pass	
955	10/03/2025	290830	6239940	71.3	101.0	0.5	Pass	
956	13/03/2025	290827	6239958	71.3	100.0	0.0	Pass	
957	13/03/2025	290833	6239955	71.4	99.0	-0.5	Pass	
958	13/03/2025	290856	6239957	71.0	99.5	-0.5	Pass	
959	13/03/2025	290852	6239945	71.4	100.5	1.0	Pass	
960	13/03/2025	290802	6239945	71.8	98.5	0.5	Pass	
961	13/03/2025	290782	6239946	71.9	98.5	1.5	Pass	
962	14/03/2025	290755	6239948	72.3	100.0	0.5	Pass	
963	14/03/2025	290772	6239953	72.3	102.0	1.5	Pass	
964	14/03/2025	290724	6239951	72.5	102.0	2.0	Pass	
965	14/03/2025	290716	6239991	73.8	100.5	0.5	Pass	
966	14/03/2025	290720	6240011	74.3	101.0	0.5	Pass	
967	17/03/2025	290731	6239979	73.6	100.5	1.0	Pass	
968	17/03/2025	290741	6239962	72.6	102.5	-1.0	Pass	
969	17/03/2025	290834	6239948	72.0	98.5	-1.0	Pass	
970	17/03/2025	290820	6239947	71.9	99.5	-1.0	Pass	
971	17/03/2025	290793	6239946	72.2	99.5	0.5	Pass	
972	18/03/2025	290896	6239960	71.7	98.5	0.5	Pass	
973	18/03/2025	290898	6239968	71.2	99.5	0.5	Pass	
974	18/03/2025	290942	6240176	73.1	100.5	-0.5	Pass	
975	19/03/2025	290943	6240181	73.7	100.5	1.0	Pass	
976	19/03/2025	290954	6240182	74.1	101.5	0.5	Pass	
977	19/03/2025	290936	6240178	74.3	99.5	0.5	Pass	
980	21/03/2025	290924	6239980	70.2	99.0	1.5	Pass	
981	21/03/2025	290922	6239974	70.3	100.5	0.5	Pass	
982	21/03/2025	290920	6239968	70.8	102.5	-0.5	Pass	
983	24/03/2025	290926	6239974	70.3	99.0	0.5	Pass	
984	24/03/2025	290926	6239967	70.3	99.0	1.5	Pass	
985	24/03/2025	290920	6239972	70.7	104.5	1.0	Fail	Retest #988
986	25/03/2025	290922	6239972	71.1	103.0	-0.5	Pass	
987	25/03/2025	290929	6239987	70.9	99.5	0.5	Pass	
988	25/03/2025	290919	6239973	70.7	102.5	0.5	Pass	
989	26/03/2025	291023	6240304	75.0	99.5	-0.5	Pass	
990	26/03/2025	290924	6239959	71.6	99.5	-1.0	Pass	
991	26/03/2025	290929	6239979	71.9	98.5	-0.5	Pass	
1070	11/06/2025	290788	6240275	81.2	100.5	1.5	Pass	
1071	11/06/2025	290793	6240277	81.0	99.5	0.5	Pass	
1072	11/06/2025	290794	6240274	81.1	99.0	1.0	Pass	
1073	29/07/2025	290996	6240168	73.7	100.5	2.0	Pass	
1074	29/07/2025	291003	6240168	72.9	101.5	0.0	Pass	
1075	29/07/2025	291003	6240173	72.7	97.0	-0.5	Fail	Retest #1077
1077	7/08/2025	291003	6240175	72.5	103.0	-1.5	Pass	
1078	2/09/2025	290915	6240141	74.0	100.5	0.5	Pass	
1079	2/09/2025	290943	6240148	73.7	98.5	0.5	Pass	
1080	2/09/2025	290915	6240144	74.8	100.5	0.5	Pass	

Moisture variation note:

Positive values = test is dry of OMC. Negative values = test is wet of OMC.

Volumes from tin "SuperStrip w ExSurfmns200 SalesOfficemns300 RemainingInsitu and Basin A" to tin "Super SP2 BEW Tender to Approved with strip"

Total cut -104774.601 m³
 Total fill 84924.138 m³
 Total balance -19850.464 m³
 ie excess of cut over fill 19850.464 m³

Cut Fill Depth Range	Lower_value	Upper_value	Colour
-100	to -6	Meters	Black
-6	to -5	Meters	Dark Red
-5	to -4	Meters	Red
-4	to -3	Meters	Dark Red
-3	to -2	Meters	Red
-2	to -1	Meters	Dark Red
-1	to -0	Meters	Red
0	to 1	Meters	Green
1	to 2	Meters	Green
2	to 3	Meters	Green
3	to 4	Meters	Green
4	to 5	Meters	Green
5	to 6	Meters	Green
6	to 100	Meters	Black

Road Boxing:
 All roads boxed to 150mm behind back of kerb.
 Refer to stage pavement plans for boxing depths.

Strip Surface:
 TRN strip survey data is post removal of dam embankments and slop. Instruction was embankments were not engineered fill and had to be stripped back to natural.
 Where strip survey has not been completed the existing surface minus 200 has been used as per tender volumes.

Respread:
 Refer to respread markup for respread thicknesses

Basin A:
 Basin A was constructed post topsoil stripping.
 Basin A was part of the sediment & erosion control measures for the site. It was filled in once it was no longer required.

No.	DESCRIPTION	DRN	APP	DATE
A	Initial Issue	BW	DO	14/08/26
B	Revised Earthworks - includes Basin A	BW	DO	09/10/26

About this Inspection Report

October 2024

Introduction

These notes are provided to amplify Douglas' inspection report in regard to the limitations of carrying out inspection work. Not all notes are necessarily relevant to this report.

Standards

This inspection report has been prepared by qualified personnel to current engineering standards of interpretation and analysis.

Copyright and Limits of Use

This inspection report is the property of Douglas and is provided for the exclusive use of the client for the specific project and purpose as described in the report. It should not be used by a third party for any purpose other than to confirm that the construction works addressed in the report have been inspected as described. Use of the inspection report is limited in accordance with the Engagement Terms for the commission.

Douglas does not undertake to guarantee the works of the contractors or relieve them of their responsibility to produce a completed product conforming to the design.

Reports

This inspection report may include advice or opinion that is based on engineering and/or geological interpretation, information provided by the client or the client's agent, and information gained from:

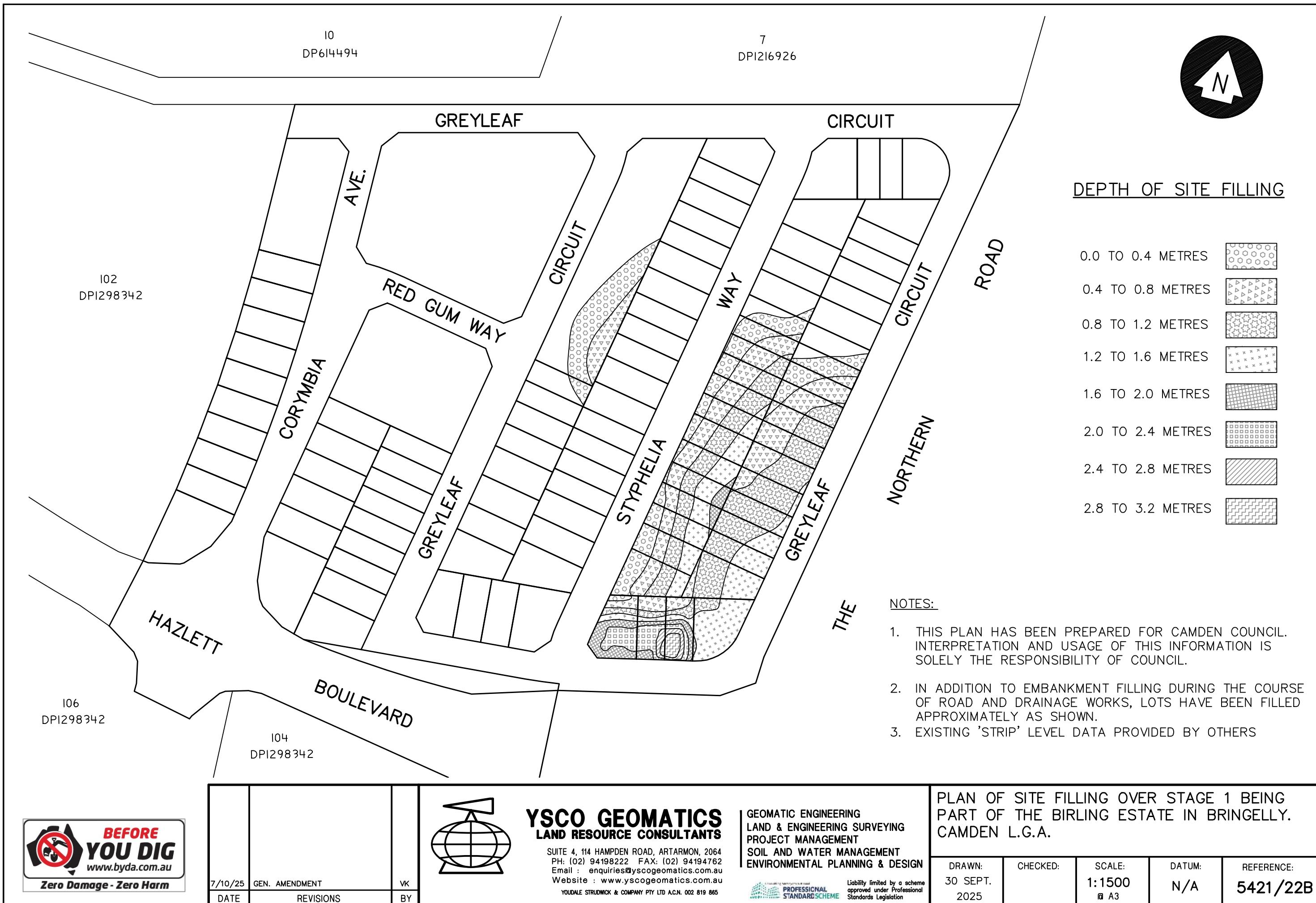
- an investigation report for the project (if available to Douglas);
- inspection of the work, exposed ground conditions, excavation spoil and performance of excavating equipment while Douglas was on site;
- investigation and testing that was carried out during the site inspection;
- anecdotal information provided by authoritative site personnel; and
- Douglas' experience and knowledge of local geology.

Such information may be limited by the frequency of any inspection or testing that was able to be practically carried out, including possible site or cost constraints imposed by the client/contractor(s). For these reasons, the reliability of this inspection report is limited by the scope of information on which it relies.

Every care is taken with the inspection report as it relates to interpretation of subsurface conditions and any recommendations or suggestions for construction or design. However, Douglas cannot anticipate or assume responsibility for:

- unexpected variations in subsurface conditions that are not evident from the inspection; and
- the actions of contractors responding to commercial pressures.

Should these issues occur, then additional advice should be sought from Douglas and, if required, amendments made.


This inspection report must be read in conjunction with any attached information. This inspection report should be kept in its entirety without separation of individual pages or sections. Douglas cannot be held responsible for interpretations or conclusions from review by others of this inspection report or test data, which are not otherwise supported by an expressed statement, interpretation, outcome or conclusion stated in this inspection report.

intentionally blank

Appendix E

Works-as-executed fill plan (prepared by YSCO Geomatics)

Appendix F

CSIRO publication

FOUNDATION MAINTENANCE AND FOOTING PERFORMANCE

Preventing soil-related building movement

This Building Technology Resource is designed as a homeowner's guide on the causes of soil-related building movement, and suggested methods to prevent resultant cracking.

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the home owner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement. Generally soil classification is provided by a geotechnical report.

SOIL TYPES

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. Table 1 below is a reproduction of Table 2.1 from Australian Standard AS 2870-2011, Residential slabs and footings.

CAUSES OF MOVEMENT

SETTLEMENT DUE TO CONSTRUCTION

There are two types of settlement that occur as a result of construction:

- ▶ Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- ▶ Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction but has been known to take many years in exceptional cases.

These problems may be the province of the builder and should be taken into consideration as part of the preparation of the site for construction.

EROSION

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

SATURATION

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume,

particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

SEASONAL SWELLING AND SHRINKAGE OF SOIL

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below, from AS 2870). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

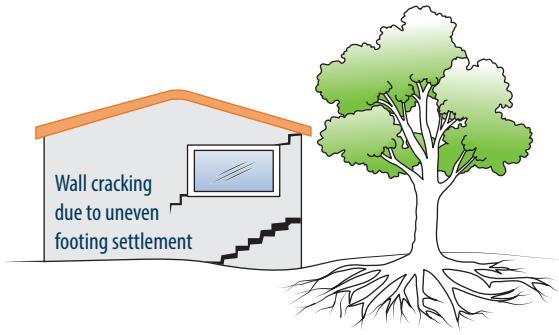
SHEAR FAILURE

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- ▶ Significant load increase.
- ▶ Reduction of lateral support of the soil under the footing due to erosion or excavation.

In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

TREE ROOT GROWTH


Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- ▶ Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.

TABLE 1. GENERAL DEFINITIONS OF SITE CLASSES.

Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites, which may experience only slight ground movement from moisture changes
M	Moderately reactive clay or silt sites, which may experience moderate ground movement from moisture changes
H1	Highly reactive clay sites, which may experience high ground movement from moisture changes
H2	Highly reactive clay sites, which may experience very high ground movement from moisture changes
E	Extremely reactive sites, which may experience extreme ground movement from moisture changes

Source: Reproduced with the permission of Standards Australia Limited © 2011. Copyright in AS 2870-2011 Residential slabs and footings vests in Standards Australia Limited.

FIGURE 1 Trees can cause shrinkage and damage.

- ▶ Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

UNEVENNESS OF MOVEMENT

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- ▶ Differing compaction of foundation soil prior to construction.
- ▶ Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior through absorption. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Shrinkage usually begins on the side of the building where the sun's heat is greatest.

EFFECTS OF UNEVEN SOIL MOVEMENT ON STRUCTURES

EROSION AND SATURATION

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- ▶ Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- ▶ Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

SEASONAL SWELLING/SHRINKAGE IN CLAY

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers

and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated, and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry, and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

MOVEMENT CAUSED BY TREE ROOTS

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

COMPLICATIONS CAUSED BY THE STRUCTURE ITSELF

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

EFFECTS ON FULL MASONRY STRUCTURES

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also

exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

EFFECTS ON FRAMED STRUCTURES

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation causes a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

EFFECTS ON BRICK VENEER STRUCTURES

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

WATER SERVICE AND DRAINAGE

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem. Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

- ▶ Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.
- ▶ Corroded guttering or downpipes can spill water to ground.
- ▶ Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

SERIOUSNESS OF CRACKING

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. Table 2 below is a reproduction of Table C1 of AS 2870-2011.

AS 2870-2011 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

PREVENTION AND CURE

PLUMBING

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

GROUND DRAINAGE

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject may be regarded as an area for an expert consultant.

PROTECTION OF THE BUILDING PERIMETER

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill.

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

CONDENSATION

In buildings with a subfloor void, such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

TABLE 2. CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS.

Description of typical damage and required repair	Approximate crack width limit	Damage category
Hairline cracks	<0.1 mm	0 – Negligible
Fine cracks which do not need repair	<1 mm	1 – Very Slight
Cracks noticeable but easily filled. Doors and windows stick slightly.	<5 mm	2 – Slight
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Watertightness often impaired.	5–15 mm (or a number of cracks 3 mm or more in one group)	3 – Moderate
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 mm but also depends on number of cracks	4 – Severe

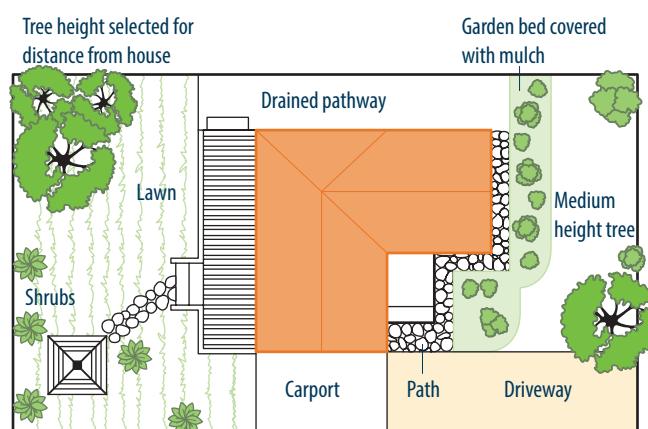
Source: Reproduced with the permission of Standards Australia Limited © 2011. Copyright in AS 2870-2011 Residential slabs and footings vests in Standards Australia Limited.

Warning: Although this Building Technology Resource deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- ▶ Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- ▶ High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders, and mould.
- ▶ Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

THE GARDEN

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.


Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

EXISTING TREES

Existing trees may cause problems with the upheaval of footings by their roots, or shrinkage from soil drying. If the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. Soil drying is a more complex issue and professional advice may be required before considering the removal or relocation of the tree.

INFORMATION ON TREES, PLANTS AND SHRUBS

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information.

FIGURE 2 Gardens for a reactive site.

EXCAVATION

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

REMEDIATION

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the home owner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.